Gorenstein Homological Aspects of Monomorphism Categories via Morita Rings

被引:38
作者
Gao, Nan [1 ]
Psaroudakis, Chrysostomos [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
中国国家自然科学基金;
关键词
Monomorphism categories; Morita rings; Homological embeddings; Gorenstein artin algebras; Gorenstein-projective modules; Gorenstein (sub)categories; Coherent functors; COHEN-MACAULAY MODULES; PROJECTIVE MODULES; SUBMODULE CATEGORIES; ABELIAN CATEGORIES; STABLE CATEGORIES; ALGEBRAS; CONTEXTS; RECOLLEMENTS;
D O I
10.1007/s10468-016-9652-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct Gorenstein-projective modules over Morita rings with zero bimodule homomorphisms and we provide sufficient conditions for such rings to be Gorenstein Artin algebras. This is the first part of our work which is strongly connected with monomorphism categories. In the second part, we investigate monomorphisms where the domain has finite projective dimension. In particular, we show that the latter category is a Gorenstein subcategory of the monomorphism category over a Gorenstein algebra. Finally, we consider the category of coherent functors over the stable category of this Gorenstein subcategory and show that it carries a structure of a Gorenstein abelian category.
引用
收藏
页码:487 / 529
页数:43
相关论文
共 48 条