The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation

被引:110
作者
Tidu, Antonin [1 ]
Janvier, Aurelie [1 ]
Schaeffer, Laure [1 ]
Sosnowski, Piotr [1 ]
Kuhn, Lauriane [2 ]
Hammann, Philippe [2 ]
Westhof, Eric [1 ]
Eriani, Gilbert [1 ]
Martin, Franck [1 ]
机构
[1] Univ Strasbourg, Inst Biol Mol & Cellulaire, Architecture & Reactivite ARN, CNRS UPR9002, F-67084 Strasbourg, France
[2] Univ Strasbourg, CNRS FRC1589, Plateforme Prote Strasbourg Esplanade, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France
关键词
SARS-CoV-2; NSP1; SL1; 5'UTR; translation; ribosome; MESSENGER-RNA; I INTERFERON; GENE-EXPRESSION; INITIATION; PURIFICATION; EVASION; CELLS;
D O I
10.1261/rna.078121.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 coronavirus is responsible for the Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into nonstructural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. Despite the presence of NSP1 on the ribosome, viral translation proceeds, however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1 and we show that the evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. Only the apical part of SL1 is required for viral translation. We further show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation and fostering SARS-CoV-2 translation in the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of subgenomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine "Achilles heel" of the virus.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
[41]   Copper(II) Binding to the Intrinsically Disordered C-Terminal Peptide of SARS-CoV-2 Virulence Factor Nsp1 [J].
Morales, Maryann ;
Ravanfar, Raheleh ;
Oyala, Paul H. ;
Gray, Harry B. ;
Winkler, Jay R. .
INORGANIC CHEMISTRY, 2022, 61 (24) :8992-8996
[42]   Molecular dynamics and intrinsic disorder analysis of the SARS-CoV-2 Nsp1 structural changes caused by substitution and deletion mutations [J].
Rezaei, Shokouh ;
Pereira, Filipe ;
Uversky, Vladimir N. ;
Sefidbakht, Yahya .
MOLECULAR SIMULATION, 2022, 48 (13) :1192-1201
[43]   Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1 [J].
Khalil, Ahmed Magdy ;
Nogales, Aitor ;
Martinez-Sobrido, Luis ;
Mostafa, Ahmed .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
[44]   SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors [J].
Kumar, Anil ;
Ishida, Ray ;
Strilets, Tania ;
Cole, Jamie ;
Lopez-Orozco, Joaquin ;
Fayad, Nawell ;
Felix-Lopez, Alberto ;
Elaish, Mohamed ;
Evseev, Danyel ;
Magor, Katharine E. ;
Mahal, Lara K. ;
Nagata, Les P. ;
Evans, David H. ;
Hobman, Tom C. .
JOURNAL OF VIROLOGY, 2021, 95 (13)
[45]   The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting [J].
Zimmer, Matthias M. ;
Kibe, Anuja ;
Rand, Ulfert ;
Pekarek, Lukas ;
Ye, Liqing ;
Buck, Stefan ;
Smyth, Redmond P. ;
Cicin-Sain, Luka ;
Caliskan, Neva .
NATURE COMMUNICATIONS, 2021, 12 (01)
[46]   Site-specific recognition of SARS-CoV-2 nsp1 protein with a tailored titanium dioxide nanoparticle - elucidation of the complex structure using NMR data and theoretical calculation [J].
Agback, Peter ;
Agback, Tatiana ;
Dominguez, Francisco ;
Frolova, Elena, I ;
Seisenbaeva, Gulaim A. ;
Kessler, Vadim G. .
NANOSCALE ADVANCES, 2022, 4 (06) :1527-1532
[47]   SARS-CoV-2 NSP6 reduces autophagosome size and affects viral replication via sigma-1 receptor [J].
Zhang, Cuiling ;
Jiang, Qiwei ;
Liu, Zirui ;
Li, Nan ;
Hao, Zhuo ;
Song, Gaojie ;
Li, Dapeng ;
Chen, Minghua ;
Lin, Lisen ;
Liu, Yan ;
Li, Xiao ;
Shang, Chao ;
Li, Yiquan .
JOURNAL OF VIROLOGY, 2024, 98 (11)
[48]   In vitro reconstitution of SARS-CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g [J].
Abaeva, Irina S. ;
Arhab, Yani ;
Miscicka, Anna ;
Hellen, Christopher U. T. ;
Pestova, Tatyana V. .
GENES & DEVELOPMENT, 2023, 37 (17-18) :844-860
[49]   SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon [J].
Shemesh, Maya ;
Aktepe, Turgut E. ;
Deerain, Joshua M. ;
McAuley, Julie L. ;
Audsley, Michelle D. ;
David, Cassandra T. ;
Purcell, Damian F. J. ;
Urin, Victoria ;
Hartmann, Rune ;
Moseley, Gregory W. ;
Mackenzie, Jason M. ;
Schreiber, Gideon ;
Harari, Daniel .
PLOS PATHOGENS, 2021, 17 (08)
[50]   Interaction between host G3BP and viral nucleocapsid protein regulates SARS-CoV-2 replication and pathogenicity [J].
Yang, Zemin ;
Johnson, Bryan A. ;
Meliopoulos, Victoria A. ;
Ju, Xiaohui ;
Zhang, Peipei ;
Hughes, Michael P. ;
Wu, Jinjun ;
Koreski, Kaitlin P. ;
Clary, Jemma E. ;
Chang, Ti-Cheng ;
Wu, Gang ;
Hixon, Jeff ;
Duffner, Jay ;
Wong, Kathy ;
Lemieux, Rene ;
Lokugamage, Kumari G. ;
Alvarado, R. Elias ;
Crocquet-Valdes, Patricia A. ;
Walker, David H. ;
Plante, Kenneth S. ;
Plante, Jessica A. ;
Weaver, Scott C. ;
Kim, Hong Joo ;
Meyers, Rachel ;
Schultz-Cherry, Stacey ;
Ding, Qiang ;
Menachery, Vineet D. ;
Taylor, J. Paul .
CELL REPORTS, 2024, 43 (03)