The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation

被引:105
作者
Tidu, Antonin [1 ]
Janvier, Aurelie [1 ]
Schaeffer, Laure [1 ]
Sosnowski, Piotr [1 ]
Kuhn, Lauriane [2 ]
Hammann, Philippe [2 ]
Westhof, Eric [1 ]
Eriani, Gilbert [1 ]
Martin, Franck [1 ]
机构
[1] Univ Strasbourg, Inst Biol Mol & Cellulaire, Architecture & Reactivite ARN, CNRS UPR9002, F-67084 Strasbourg, France
[2] Univ Strasbourg, CNRS FRC1589, Plateforme Prote Strasbourg Esplanade, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France
关键词
SARS-CoV-2; NSP1; SL1; 5'UTR; translation; ribosome; MESSENGER-RNA; I INTERFERON; GENE-EXPRESSION; INITIATION; PURIFICATION; EVASION; CELLS;
D O I
10.1261/rna.078121.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 coronavirus is responsible for the Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into nonstructural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. Despite the presence of NSP1 on the ribosome, viral translation proceeds, however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1 and we show that the evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. Only the apical part of SL1 is required for viral translation. We further show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation and fostering SARS-CoV-2 translation in the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of subgenomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine "Achilles heel" of the virus.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [31] SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation
    Xu, Zhang
    Choi, Jung-Hyun
    Dai, David L.
    Luo, Jun
    Ladak, Reese Jalal
    Li, Qian
    Wang, Yimeng
    Zhang, Christine
    Wiebe, Shane
    Liu, Alex C. H.
    Ran, Xiaozhuo
    Yang, Jiaqi
    Naeli, Parisa
    Garzia, Aitor
    Zhou, Lele
    Mahmood, Niaz
    Deng, Qiyun
    Elaish, Mohamed
    Lin, Rongtuan
    Mahal, Lara K.
    Hobman, Tom C.
    Pelletier, Jerry
    Alain, Tommy
    Vidal, Silvia M.
    Duchaine, Thomas
    Mazhab-Jafari, Mohammad T.
    Mao, Xiaojuan
    Jafarnejad, Seyed Mehdi
    Sonenberg, Nahum
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (32)
  • [32] SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome
    Zaffagni, Michela
    Harris, Jenna M.
    Patop, Ines L.
    Pamudurti, Nagarjuna Reddy
    Nguyen, Sinead
    Kadener, Sebastian
    [J]. ELIFE, 2022, 11
  • [33] Deletion of 82-85 N-Terminal Residues in SARS-CoV-2 Nsp1 Restricts Virus Replication
    Savellini, Gianni Gori
    Anichini, Gabriele
    Manetti, Fabrizio
    Trivisani, Claudia Immacolata
    Cusi, Maria Grazia
    [J]. VIRUSES-BASEL, 2024, 16 (05):
  • [34] Eight-amino-acid sequence at the N-terminus of SARS-CoV-2 nsp1 is involved in stabilizing viral genome replication
    Ueno, Shiori
    Amarbayasgalan, Sodbayasgalan
    Sugiura, Yoshiro
    Takahashi, Tatsuki
    Shimizu, Kenta
    Nakagawa, Keisuke
    Kawabata-Iwakawa, Reika
    Kamitani, Wataru
    [J]. VIROLOGY, 2024, 595
  • [35] The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation
    Lei, Jian
    Ma-Lauer, Yue
    Han, Yinze
    Thoms, Matthias
    Buschauer, Robert
    Jores, Joerg
    Thiel, Volker
    Beckmann, Roland
    Deng, Wen
    Leonhardt, Heinrich
    Hilgenfeld, Rolf
    von Brunn, Albrecht
    [J]. EMBO JOURNAL, 2021, 40 (11)
  • [36] The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation
    Meyers, Jordan M.
    Ramanathan, Muthukumar
    Shanderson, Ronald L.
    Beck, Aimee
    Donohue, Laura
    Ferguson, Ian
    Guo, Margaret G.
    Rao, Deepti S.
    Miao, Weili
    Reynolds, David
    Yang, Xue
    Zhao, Yang
    Yang, Yen-Yu
    Blish, Catherine
    Wang, Yinsheng
    Khavari, Paul A.
    [J]. PLOS PATHOGENS, 2021, 17 (10)
  • [37] Molecular dynamics and intrinsic disorder analysis of the SARS-CoV-2 Nsp1 structural changes caused by substitution and deletion mutations
    Rezaei, Shokouh
    Pereira, Filipe
    Uversky, Vladimir N.
    Sefidbakht, Yahya
    [J]. MOLECULAR SIMULATION, 2022, 48 (13) : 1192 - 1201
  • [38] Copper(II) Binding to the Intrinsically Disordered C-Terminal Peptide of SARS-CoV-2 Virulence Factor Nsp1
    Morales, Maryann
    Ravanfar, Raheleh
    Oyala, Paul H.
    Gray, Harry B.
    Winkler, Jay R.
    [J]. INORGANIC CHEMISTRY, 2022, 61 (24) : 8992 - 8996
  • [39] Antiviral responses versus virus-induced cellular shutoff: a game of thrones between influenza A virus NS1 and SARS-CoV-2 Nsp1
    Khalil, Ahmed Magdy
    Nogales, Aitor
    Martinez-Sobrido, Luis
    Mostafa, Ahmed
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2024, 14
  • [40] SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors
    Kumar, Anil
    Ishida, Ray
    Strilets, Tania
    Cole, Jamie
    Lopez-Orozco, Joaquin
    Fayad, Nawell
    Felix-Lopez, Alberto
    Elaish, Mohamed
    Evseev, Danyel
    Magor, Katharine E.
    Mahal, Lara K.
    Nagata, Les P.
    Evans, David H.
    Hobman, Tom C.
    [J]. JOURNAL OF VIROLOGY, 2021, 95 (13)