The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation

被引:110
作者
Tidu, Antonin [1 ]
Janvier, Aurelie [1 ]
Schaeffer, Laure [1 ]
Sosnowski, Piotr [1 ]
Kuhn, Lauriane [2 ]
Hammann, Philippe [2 ]
Westhof, Eric [1 ]
Eriani, Gilbert [1 ]
Martin, Franck [1 ]
机构
[1] Univ Strasbourg, Inst Biol Mol & Cellulaire, Architecture & Reactivite ARN, CNRS UPR9002, F-67084 Strasbourg, France
[2] Univ Strasbourg, CNRS FRC1589, Plateforme Prote Strasbourg Esplanade, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France
关键词
SARS-CoV-2; NSP1; SL1; 5'UTR; translation; ribosome; MESSENGER-RNA; I INTERFERON; GENE-EXPRESSION; INITIATION; PURIFICATION; EVASION; CELLS;
D O I
10.1261/rna.078121.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 coronavirus is responsible for the Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into nonstructural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. Despite the presence of NSP1 on the ribosome, viral translation proceeds, however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1 and we show that the evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. Only the apical part of SL1 is required for viral translation. We further show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation and fostering SARS-CoV-2 translation in the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of subgenomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine "Achilles heel" of the virus.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
[21]   Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1 [J].
Anastasakis, Dimitrios G. ;
Benhalevy, Daniel ;
Cuburu, Nicolas ;
Altan-Bonnet, Nihal ;
Hafner, Markus .
PLOS ONE, 2024, 19 (01)
[22]   SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms [J].
Vazquez, Christine ;
Swanson, Sydnie E. ;
Negatu, Seble G. ;
Dittmar, Mark ;
Miller, Jesse ;
Ramage, Holly R. ;
Cherry, Sara ;
Jurado, Kellie A. .
PLOS ONE, 2021, 16 (06)
[23]   Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2 [J].
Thoms, Matthias ;
Buschauer, Robert ;
Ameismeier, Michael ;
Koepke, Lennart ;
Denk, Timo ;
Hirschenberger, Maximilian ;
Kratzat, Hanna ;
Hayn, Manuel ;
Mackens-Kiani, Timur ;
Cheng, Jingdong ;
Straub, Jan H. ;
Sturzel, Christina M. ;
Frohlich, Thomas ;
Berninghausen, Otto ;
Becker, Thomas ;
Kirchhoff, Frank ;
Sparrer, Konstantin M. J. ;
Beckmann, Roland .
SCIENCE, 2020, 369 (6508) :1249-+
[24]   Emerging Mutations in Nsp1 of SARS-CoV-2 and Their Effect on the Structural Stability [J].
Mou, Kejie ;
Mukhtar, Farwa ;
Khan, Muhammad Tahir ;
Darwish, Doaa B. ;
Peng, Shaoliang ;
Muhammad, Shabbir ;
Al-Sehemi, Abdullah G. ;
Wei, Dong-Qing .
PATHOGENS, 2021, 10 (10)
[25]   Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response [J].
Slobodin, Boris ;
Sehrawat, Urmila ;
Lev, Anastasia ;
Hayat, Daniel ;
Zuckerman, Binyamin ;
Fraticelli, Davide ;
Ogran, Ariel ;
Ben-Shmuel, Amir ;
Bar-David, Elad ;
Levy, Haim ;
Ulitsky, Igor ;
Dikstein, Rivka .
NUCLEIC ACIDS RESEARCH, 2022, 50 (14) :8080-8092
[26]   SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses [J].
Banerjee, Abhik K. ;
Blanco, Mario R. ;
Bruce, Emily A. ;
Honson, Drew D. ;
Chen, Linlin M. ;
Chow, Amy ;
Bhat, Prashant ;
Ollikainen, Noah ;
Quinodoz, Sofia A. ;
Loney, Colin ;
Thai, Jasmine ;
Miller, Zachary D. ;
Lin, Aaron E. ;
Schmidt, Madaline M. ;
Stewart, Douglas G. ;
Goldfarb, Daniel ;
De Lorenzo, Giuditta ;
Rihn, Suzannah J. ;
Voorhees, Rebecca M. ;
Botten, Jason W. ;
Majumdar, Devdoot ;
Guttman, Mitchell .
CELL, 2020, 183 (05) :1325-+
[27]   SARS-CoV-2 Nsp1 traps RNA in the nucleus to escape immune detection [J].
Guillen, Jaresley V. ;
Glaunsinger, Britt A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (25)
[28]   Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1 [J].
Wang, Xingjun ;
Rimal, Suman ;
Tantray, Ishaq ;
Geng, Ji ;
Bhurtel, Sunil ;
Khaket, Tejinder Pal ;
Li, Wen ;
Han, Zhe ;
Lu, Bingwei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (42)
[29]   SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation [J].
Yanping Zhang ;
Xiaojie Jin ;
Haiyan Wang ;
Yaoyao Miao ;
Xiaoping Yang ;
Wenqing Jiang ;
Bin Yin .
Journal of Applied Genetics, 2022, 63 :159-167
[30]   SARS-CoV-2 competes with host mRNAs for efficient translation by maintaining the mutations favorable for translation initiation [J].
Zhang, Yanping ;
Jin, Xiaojie ;
Wang, Haiyan ;
Miao, Yaoyao ;
Yang, Xiaoping ;
Jiang, Wenqing ;
Yin, Bin .
JOURNAL OF APPLIED GENETICS, 2022, 63 (01) :159-167