Impacts of day versus night temperatures on spring wheat yields: A comparison of empirical and CERES model predictions in three locations

被引:133
作者
Lobell, David B. [1 ]
Ortiz-Monasterio, J. Ivan
机构
[1] Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA
[2] Int Maize & Wheat Improvement Ctr, CIMMYT, Wheat Program, Mexico City 06600, DF, Mexico
关键词
D O I
10.2134/agronj2006.0209
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Trends in recent temperature observations and model projections of the future are characterized by greater warming of daily minimum (tmin) relative to maximum (tmax) temperatures. To aid understanding of how tmin and tmax differentially affect crop yields, we analyzed variations of regional spring wheat yields and temperatures for three irrigated sites in western North America that were characterized by low correlations between tmin and tmax. The crop model CERES-Wheat v3.5 was evaluated in each site and used to project future response to temperature changes. Train and tmax exhibited distinct historical correlations with yields, with CERES successfully capturing the observed relationships in each region. In the Yaqui Valley of Mexico, historical yields were strongly correlated with tmin but not tmax. However, CERES projections of response to increased tmin or tmax (holding other variables constant) were similar (similar to 6% degrees C-1), indicating that the apparent historical importance of tmin mainly results from covariation between temperatures and solar radiation and not greater direct effects of tmin on yields. In the San Luis-Mexicali Valley of Mexico and in the Imperial Valley of California, the opposite was observed: historical yield correlations with tmin and tmax were similar, but projected responses to tmax were roughly three times larger than train. The latter is explained by opposing effects of tmin and tmax on grain filling rates in CERES, with higher tmin increasing harvest indices. This model mechanism was not clearly supported by historical data and remains an area of uncertainty for projecting yield responses to climate change.
引用
收藏
页码:469 / 477
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2001, CROP RESPONSES ADAPT
[2]   USING YIELD PREDICTION MODELS TO ASSESS YIELD GAINS - A CASE-STUDY FOR WHEAT [J].
BELL, MA ;
FISCHER, RA .
FIELD CROPS RESEARCH, 1994, 36 (02) :161-166
[3]   ON THE RELATIONSHIP BETWEEN INCOMING SOLAR-RADIATION AND DAILY MAXIMUM AND MINIMUM TEMPERATURE [J].
BRISTOW, KL ;
CAMPBELL, GS .
AGRICULTURAL AND FOREST METEOROLOGY, 1984, 31 (02) :159-166
[4]  
Dai A, 2001, J CLIMATE, V14, P485, DOI 10.1175/1520-0442(2001)014<0485:COTTAT>2.0.CO
[5]  
2
[6]   Potential effects of differential day-night warming in global climate change on crop production [J].
Dhakhwa, GB ;
Campbell, CL .
CLIMATIC CHANGE, 1998, 40 (3-4) :647-667
[7]   Maximum and minimum temperature trends for the globe [J].
Easterling, DR ;
Horton, B ;
Jones, PD ;
Peterson, TC ;
Karl, TR ;
Parker, DE ;
Salinger, MJ ;
Razuvayev, V ;
Plummer, N ;
Jamason, P ;
Folland, CK .
SCIENCE, 1997, 277 (5324) :364-367
[9]   Application of the CERES-Wheat model to yield predictions in the irrigated plains of the Indian Punjab [J].
Hundal, SS ;
PrabhjyotKaur .
JOURNAL OF AGRICULTURAL SCIENCE, 1997, 129 (01) :13-18
[10]   The DSSAT cropping system model [J].
Jones, JW ;
Hoogenboom, G ;
Porter, CH ;
Boote, KJ ;
Batchelor, WD ;
Hunt, LA ;
Wilkens, PW ;
Singh, U ;
Gijsman, AJ ;
Ritchie, JT .
EUROPEAN JOURNAL OF AGRONOMY, 2003, 18 (3-4) :235-265