Design of front emitter layer for improving efficiency in silicon heterojunction solar cells via numerical calculations

被引:8
|
作者
Kim, Sehyeon [1 ]
Park, Hyeongsik [1 ,2 ]
Pham, Duy Phong [1 ]
Kim, Youngkuk [1 ]
Kim, Sangho [3 ,4 ]
Cho, Eun-Chel [1 ]
Cho, Younghyun [1 ]
Yi, Junsin [1 ]
机构
[1] Sungkyunkwan Univ, Coll Informat & Commun Engn, 2066 Seobu Ro, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Convergence Res Ctr Energy & Environm Sci, 2066 Seobu Ro, Suwon 16419, South Korea
[3] Incheon Natl Univ, Photoelect & Energy Device Applicat Lab PEDAL, Multidisciplinary Core Inst Future Energies MCIFE, 119 Acad Rd, Incheon, South Korea
[4] Incheon Natl Univ, Dept Elect Engn, 119 Acad Rd, Incheon 22012, South Korea
来源
OPTIK | 2021年 / 235卷 / 235期
基金
新加坡国家研究基金会;
关键词
VIPV; High efficiency; Silicon; Heterojunction; Emitter; AFORS-HET; HYDROGENATED AMORPHOUS-SILICON; TRANSPARENT CONDUCTIVE OXIDE; WORK FUNCTION; LIMITING EFFICIENCY; SI HETEROJUNCTION; THIN-FILM; CONTACT; PASSIVATION;
D O I
10.1016/j.ijleo.2021.166580
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An a-Si:H (p) window layer is used in silicon heterojunction (SHJ) solar cells; however, it is limited by short-circuit current density (J(SC)). In general, an emitter with a high doping concentration is appropriate for contact with a transparent conducting oxide (TCO); however, it is influenced by side effects such as a reduction of J(SC) through optical absorption. The conductivity of the emitter is lowered as its doping concentration is reduced, resulting in a decrease in V-OC and FF. We investigated p-type emitters such as those made of a-Si:H, a-SiC:H, and mu c-SiO:H through film analysis and AFORS-HET simulation to improve the conversion efficiency of the device. Prior to conducting a simulation, a fabricated SHJ solar cell was used to theoretically calculate the precise parameter values. The obtained efficiency was 22.03 % when V-OC=730 mV, J(SC)=39.63 mA/cm(2), and FF = 76.13 %. Based on the fitted structure, we conducted experiments to test the emitter materials within a wide band gap and performed a simulation. In the case of mu c-SiO:H (p), the achieved efficiency was 24.23 % when V-OC=736.6 mV, J(SC)=40.15 mA/cm(2), and FF = 81.93 %.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Controlling a crystalline seed layer for mirocrystalline silicon oxide window layer in rear emitter silicon heterojunction cells
    Duy Phong Pham
    Kim, Sangho
    Lee, Sunhwa
    Anh Huy Tuan Le
    Cho, Eun-Chel
    Park, Jinjoo
    Yi, Junsin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 102
  • [42] Silicon Heterojunction Solar Cells With Nanocrystalline Silicon Oxide Emitter: Insights Into Charge Carrier Transport
    Kirner, Simon
    Mazzarella, Luana
    Korte, Lars
    Stannowski, Bernd
    Rech, Bernd
    Schlatmann, Rutger
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (06): : 1601 - 1605
  • [43] Silicon heterojunction solar cells with nanocrystalline Silicon Oxide emitter: Insights into charge carrier transport
    Kirner, Simon
    Mazzarella, Luana
    Korte, Lars
    Stannowski, Bernd
    Rech, Bernd
    Schlatmann, Rutger
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [44] Heavy Boron-Doped Silicon Tunneling Inter-layer Enables Efficient Silicon Heterojunction Solar Cells
    Zhou, Yinuo
    Zhang, Honghua
    Li, Zhenfei
    Huang, Shenglei
    Du, Junlin
    Han, Anjun
    Shi, Jianhua
    Wang, Guangyuan
    Shi, Qiang
    Zhao, Wenjie
    Fu, Haoxin
    Fan, Bin
    Meng, Fanying
    Liu, Wenzhu
    Liu, Zhengxin
    Zhang, Liping
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (35) : 46889 - 46896
  • [45] Rear-emitter Si heterojunction solar cells with over 23% efficiency
    Watahiki, Tatsuro
    Furuhata, Takeo
    Matsuura, Tsutomu
    Shinagawa, Tomohiro
    Shirayanagi, Yusuke
    Morioka, Takayuki
    Hayashida, Tetsuro
    Yuda, Yohei
    Kano, Shintaro
    Sakai, Yuichi
    Tokioka, Hidetada
    Kusakabe, Yoshihiko
    Fuchigami, Hiroyuki
    APPLIED PHYSICS EXPRESS, 2015, 8 (02) : 021402
  • [46] High Efficiency Hybrid Organic/Silicon-Nanohole Heterojunction Solar Cells
    Thiyagu, Subramani
    Hsueh, Chen-Chih
    Liu, Chien-Ting
    Syu, Hong-Jhang
    Yang, Song-Ting
    Lin, Ching-Fuh
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 1553 - 1555
  • [47] Over 23% power conversion efficiency of planar perovskite solar cells via bulk heterojunction design
    Yang, Shuzhang
    Han, Qianji
    Wang, Liang
    Zhou, Yi
    Yu, Fengyang
    Li, Chuanqing
    Cai, Xiaoyong
    Gao, Liguo
    Zhang, Chu
    Ma, Tingli
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [48] Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells
    Lee, Sunhwa
    Duy Phong Pham
    Kim, Youngkuk
    Cho, Eun-Chel
    Park, Jinjoo
    Yi, Junsin
    ENERGIES, 2020, 13 (11)
  • [49] Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors
    Holman, Zachary C.
    Descoeudres, Antoine
    De Wolf, Stefaan
    Ballif, Christophe
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (04): : 1243 - 1249
  • [50] In Situ Process to Form Passivated Tunneling Oxides for Front-Surface Field in Rear-Emitter Silicon Heterojunction Solar Cells
    Lee, Sunhwa
    Thanh Thuy Trinh
    Pham, Duy Phong
    Kim, Sangho
    Kim, Youngkuk
    Park, Jinjoo
    Nguyen Dang Nam
    Vinh-Ai Dao
    Yi, Junsin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24): : 19332 - 19337