Pediatric Sleep Stage Classification Using Multi-Domain Hybrid Neural Networks

被引:20
|
作者
Jeon, Yonghoon [1 ]
Kim, Siwon [2 ]
Choi, Hyun-Soo [2 ]
Chung, Yoon Gi [1 ]
Choi, Sun Ah [3 ,4 ]
Kim, Hunmin [3 ]
Yoon, Sungroh [2 ,5 ,6 ]
Hwang, Hee [3 ]
Kim, Ki Joong [7 ,8 ]
机构
[1] Seoul Natl Univ, Healthcare ICT Res Ctr, Bundang Hosp, Seongnam 13605, South Korea
[2] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[3] Seoul Natl Univ, Bundang Hosp, Dept Pediat, Seongnam 13620, South Korea
[4] Dankook Univ Hosp, Dept Pediat, Cheonan 31116, South Korea
[5] Seoul Natl Univ, ISRC, INMC, ASRI, Seoul 08826, South Korea
[6] Seoul Natl Univ, Inst Engn Res, Seoul 08826, South Korea
[7] Seoul Natl Univ, Pediat Clin Neurosci Ctr, Childrens Hosp, Seoul 03080, South Korea
[8] Seoul Natl Univ, Coll Med, Dept Pediat, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
Automatic sleep staging; deep learning; convolutional neural network; long short-term memory; instantaneous frequency features; pediatric electroencephalography; EEG SIGNALS; FREQUENCY; CHANNEL; IDENTIFICATION; DECOMPOSITION;
D O I
10.1109/ACCESS.2019.2928129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sleep staging is an important part of clinical neurology. However, it is still performed manually by technical experts and is labor-intensive and time-consuming. To overcome these obstacles in the manual sleep staging process, a large number of machine learning-based classifiers with hand-engineered features have been proposed. Additionally, combinations of a deep neural network (DNN) have been recently highlighted as the state-of-the-art classifiers in view of their effectiveness for automatic sleep staging. In spite of the existence of a large number of these types of classifiers, to-this-date, no prior DNN-based approach has attempted sleep-stage classification using pediatric electroencephalographic (EEG) signals. In this paper, we propose a novel end-to-end classifier based on a multi-domain hybrid neural network (HNN-multi) approach consisting of a convolutional neural network and bidirectional long short-term memory for automatic sleep staging with pediatric scalp EEG recordings. To find effective temporal, spatial, and domain-specific conditions, we investigated noticeable changes in the classification performance corresponding to: 1) the length of input signals; 2) the number of channels; and 3) the types of input signals in the time and frequency domains. Our HNN-based classifier yielded the best performance metrics using 30-s time series in combination with an instantaneous frequency using a 19-channel, three-stage classification, with overall accuracy, F1 score, and Cohen's Kappa, equal to 92.21%, 0.90, and 0.88, respectively. We suggest that an effective combination of temporal and spatial time-domain clues with time-varying frequency domain information plays a pivotal role in pediatric, automatic sleep staging. Sufficiently reasonable performance of our HNN-based approach coping with the highly complicated pediatric EEG signatures hopefully sheds light on the clinical feasibility of the DNN-based automatic sleep staging for pediatric neurology.
引用
收藏
页码:96495 / 96505
页数:11
相关论文
共 50 条
  • [41] Multi-Domain Feature Fusion for Emotion Classification Using DEAP Dataset
    Khateeb, Muhammad
    Anwar, Syed Muhammad
    Alnowami, Majdi
    IEEE ACCESS, 2021, 9 : 12134 - 12142
  • [42] Multi-Domain Sentiment Classification with Classifier Combination
    Li, Shou-Shan
    Huang, Chu-Ren
    Zong, Cheng-Qing
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2011, 26 (01) : 25 - 33
  • [43] Multi-Domain Sentiment Classification with Classifier Combination
    李寿山
    黄居仁
    宗成庆
    Journal of Computer Science & Technology, 2011, 26 (01) : 25 - 33
  • [44] Sleep stage scoring using EMD and neural networks
    Caseiro, P.
    Freire, L.
    Andrade, A.
    JOURNAL OF SLEEP RESEARCH, 2012, 21 : 203 - 203
  • [45] Automatic sleep stage classification using deep learning: signals, data representation, and neural networks
    Liu, Peng
    Qian, Wei
    Zhang, Hua
    Zhu, Yabin
    Hong, Qi
    Li, Qiang
    Yao, Yudong
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (11)
  • [46] Multivariate Sleep Stage Classification using Hybrid Self-Attentive Deep Learning Networks
    Yuan, Ye
    Jia, Kebin
    Ma, Fenglong
    Xun, Guangxu
    Wang, Yaqing
    Su, Lu
    Zhang, Aidong
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 963 - 968
  • [47] A Hybrid EEG-Based Stress State Classification Model Using Multi-Domain Transfer Entropy and PCANet
    Dong, Yuefang
    Xu, Lin
    Zheng, Jian
    Wu, Dandan
    Li, Huanli
    Shao, Yongcong
    Shi, Guohua
    Fu, Weiwei
    BRAIN SCIENCES, 2024, 14 (06)
  • [48] Sleep Disorder Classification Using Convolutional Neural Networks
    Peng, Chun-Cheng
    Kou, Chu-Yun
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 539 - 548
  • [49] Auxiliary classification of cervical cells based on multi-domain hybrid deep learning framework
    Zhang, Chuanwang
    Jia, Dongyao
    Li, Ziqi
    Wu, Nengkai
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [50] Neural Paraphrase Generation with Multi-domain Corpus
    Qiao, Lin
    Li, Yida
    Zhong, ChenLi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 54 - 66