Human activity pattern implications for modeling SARS-CoV-2 transmission

被引:13
|
作者
Wang, Yulan [1 ]
Li, Bernard [1 ]
Gouripeddi, Ramkiran [1 ,2 ,3 ]
Facelli, Julio C. [1 ,2 ,3 ]
机构
[1] Dept Biomed Informat, 421 Wakara Way,Suite 140, Salt Lake City, UT 84108 USA
[2] Ctr Clin & Translat Sci CCTS Biomed Informat Core, Salt Lake City, UT USA
[3] Univ Utah, Ctr Excellence Exposure Hlth Informat, Salt Lake City, UT 84112 USA
关键词
COVID-19; SARS-CoV-2; Epidemiological Modeling; SpatioTemporal Human Activity Model; Agent-Based Modeling; Human Activity patterns; Transmission Dynamics; PANDEMIC INFLUENZA; COVID-19; EPIDEMIC; DYNAMICS; LESSONS; SPREAD; HEALTH; ORIGIN; SARS;
D O I
10.1016/j.cmpb.2020.105896
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objectives: SARS-CoV-2 emerged in December 2019 and rapidly spread into a global pandemic. Designing optimal community responses (social distancing, vaccination) is dependent on the stage of the disease progression, discovery of asymptomatic individuals, changes in virulence of the pathogen, and current levels of herd immunity. Community strategies may have severe and undesirable social and economic side effects. Modeling is the only available scientific approach to develop effective strategies that can minimize these unwanted side effects while retaining the effectiveness of the interventions. Methods: We extended the agent-based model, SpatioTemporal Human Activity Model (STHAM), for simulating SARS-CoV-2 transmission dynamics. Results: Here we present preliminary STHAM simulation results that reproduce the overall trends observed in the Wasatch Front (Utah, United States of America) for the general population. The results presented here clearly indicate that human activity patterns are important in predicting the rate of infection for different demographic groups in the population. Conclusions: Future work in pandemic simulations should use empirical human activity data for agent-based techniques. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Are Animals a Neglected Transmission Route of SARS-CoV-2?
    Hernandez, Marta
    Abad, David
    Eiros, Jose Maria
    Rodriguez-Lazaro, David
    PATHOGENS, 2020, 9 (06):
  • [22] SARS-CoV-2 Transmission Channels: A Review of the Literature
    Abd El-Wahab, Ekram W.
    Eassa, Safaa M.
    Metwally, Mohammed
    Al-Hraishawi, Husam
    Omar, Sherif R.
    MEDICC REVIEW, 2020, 22 (04) : 51 - 70
  • [23] An Agent-Based Model of the Local Spread of SARS-CoV-2: Modeling Study
    Staffini, Alessio
    Svensson, Akiko Kishi
    Chung, Ung-Il
    Svensson, Thomas
    JMIR MEDICAL INFORMATICS, 2021, 9 (04)
  • [24] Modeling the effectiveness of olfactory testing to limit SARS-CoV-2 transmission
    Larremore, Daniel B.
    Toomre, Derek
    Parker, Roy
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] On the Transmission Dynamics of SARS-CoV-2 in a Temperate Climate
    Kioutsioukis, Ioannis
    Stilianakis, Nikolaos I.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (04) : 1 - 17
  • [26] Airborne Transmission of the SARS-CoV-2 Delta Variant and the SARS-CoV-2 Omicron Variant
    Lee, Byung Uk
    AEROSOL AND AIR QUALITY RESEARCH, 2022, 22 (01)
  • [27] Human Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 in Children
    Aleebrahim-Dehkordi, Elahe
    Soveyzi, Faezeh
    Deravi, Niloofar
    Rabbani, Zahra
    Saghazadeh, Amene
    Rezaei, Nima
    JOURNAL OF PEDIATRIC NURSING-NURSING CARE OF CHILDREN & FAMILIES, 2021, 56 : 70 - 79
  • [28] MODELING SARS-CoV-2 SPREAD WITH DYNAMIC ISOLATION
    Islam, Md. Azmir Ibne
    Shanta, Sharmin Sultana
    Rahman, Ashrafur
    MATHEMATICS IN APPLIED SCIENCES AND ENGINEERING, 2021, 2 (04): : 219 - 234
  • [29] The unique features of SARS-CoV-2 transmission: Comparison with SARS-CoV, MERS-CoV and 2009 H1N1 pandemic influenza virus
    Wu, Zhonglan
    Harrich, David
    Li, Zhongyang
    Hu, Dongsheng
    Li, Dongsheng
    REVIEWS IN MEDICAL VIROLOGY, 2021, 31 (02)
  • [30] Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave
    Davis, Jessica T.
    Chinazzi, Matteo
    Perra, Nicola
    Mu, Kunpeng
    Piontti, Ana
    Ajelli, Marco
    Dean, Natalie E.
    Gioannini, Corrado
    Litvinova, Maria
    Merler, Stefano
    Rossi, Luca
    Sun, Kaiyuan
    Xiong, Xinyue
    Longini, Ira M., Jr.
    Halloran, M. Elizabeth
    Viboud, Cecile
    Vespignani, Alessandro
    NATURE, 2021, 600 (7887) : 127 - +