Holomorphic disks, link invariants and the multi-variable Alexander polynomial

被引:132
作者
Ozsvath, Peter [1 ]
Szabo, Zoltan [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.2140/agt.2008.8.615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The knot Floer homology is an invariant of knots in S(3) whose Euler characteristic is the Alexander polynomial of the knot. In this paper we generalize this to links in S(3) giving an invariant whose Euler characteristic is the multi-variable Alexander polynomial. We study basic properties of this invariant, and give some calculations.
引用
收藏
页码:615 / 692
页数:78
相关论文
共 28 条
[1]   Compactness results in Symplectic Field Theory [J].
Bourgeois, F ;
Eliashberg, Y ;
Hofer, H ;
Wysocki, K ;
Zehnder, E .
GEOMETRY & TOPOLOGY, 2003, 7 :799-888
[2]   The superpolynomial for knot homologies [J].
Dunfield, Nathan M. ;
Gukov, Sergei ;
Rasmussen, Jacob .
EXPERIMENTAL MATHEMATICS, 2006, 15 (02) :129-159
[3]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560
[4]   MORSE-THEORY FOR LAGRANGIAN INTERSECTIONS [J].
FLOER, A .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (03) :513-547
[5]  
FUKAYA K, 2000, PREPRINT, V487, P488
[6]  
Gornik B., 2004, ARXIVMATHQA0402266
[7]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347
[8]   Relative Gromov-Witten invariants [J].
Ionel, EN ;
Parker, TH .
ANNALS OF MATHEMATICS, 2003, 157 (01) :45-96
[9]   A categorification of the Jones polynomial [J].
Khovanov, M .
DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) :359-426
[10]  
KHOVANOV M, 2004, ARXIVMATHQA0401268