HARNACK INEQUALITY FOR FUNCTIONAL SDEs WITH BOUNDED MEMORY

被引:28
作者
Es-Sarhir, Abdelhadi [1 ]
Von Renesse, Max-K. [1 ]
Scheutzow, Michael [1 ]
机构
[1] Tech Univ Berlin, Fak 2, Inst Math, D-10623 Berlin, Germany
关键词
Harnack Inequality; Coupling; Strong Feller Property; EQUATIONS; MANIFOLDS;
D O I
10.1214/ECP.v14-1513
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use a coupling method for functional stochastic differential equations with bounded memory to establish an analogue of Wang's dimension-free Harnack inequality [13]. The strong Feller property for the corresponding segment process is also obtained.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 14 条
[1]   Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below [J].
Arnaudon, M ;
Thalmaier, A ;
Wang, FY .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :223-233
[2]  
Da Prato G., 1996, LONDON MATH SOC LECT, V229
[3]   Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups [J].
Da Prato, Giuseppe ;
Roeckner, Michael ;
Wang, Feng-Yu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :992-1017
[4]  
Es-Sarhir A, 2010, DIFFER INTEGRAL EQU, V23, P189
[5]   Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations [J].
Hairer, M. ;
Mattingly, J. C. ;
Scheutzow, M. .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (1-2) :223-259
[6]   Harnack inequalities: An introduction [J].
Kassmann, Moritz .
BOUNDARY VALUE PROBLEMS, 2007, 2007 (1)
[7]  
KRYLOV NV, 1990, TEOR VEROYA PRIMEN, V35, P576
[8]  
Lifshits M.A., 1995, Mathematics and its Applications, V322, pxii+333
[9]   Harnack inequality and applications for stochastic evolution equations with monotone drifts [J].
Liu, Wei .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (04) :747-770
[10]   Exponential growth rates for stochastic delay differential equations [J].
Scheutzow, M .
STOCHASTICS AND DYNAMICS, 2005, 5 (02) :163-174