Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes

被引:13
作者
Zhang, Yunbo [1 ]
Lin, Qiaowei [2 ]
Han, Junwei [2 ]
Han, Zhiyuan [2 ]
Li, Tong [2 ]
Kang, Feiyu [1 ,2 ]
Yang, Quan-Hong [3 ]
Lu, Wei [2 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Guangdong, Peoples R China
[2] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Guangdong, Peoples R China
[3] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal anode; Bacterial cellulose; Three-dimensional current collector; Lithium dendrite; Oxygen-containing functional group; BATTERIES; LIQUID; MATRIX; IONS;
D O I
10.3866/PKU.WHXB202008088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium (Li) metal anodes are critical components for next-generation high-energy density batteries, owing to their high theoretical specific capacity (3800 mAh.g(-1)) and low voltage (-3.040 V versus the standard hydrogen electrode). However, their applications are hindered by dendrite growth, which potentially induces inner short circuit and leads to safety issues. Employing three-dimensional (3D) current collectors is an effective strategy to suppress dendrite growth by decreasing the local current density. However, many of the reported 3D current collectors have a lithiophobic surface, which leads to non-uniform Li+ ion deposition. Thus, a complicated modification process is required to increase the lithiophilic property of the current collectors. In addition, they have a large weight or volume, which greatly lowers the energy density of the entire anode. In this work, we report a lightweight 3D carbon current collector with a lithiophilic surface by employing the direct carbonization of low-cost bacterial cellulose (BC) biomass. The current collector is composed of electrically conductive, robust, and interconnected carbon nanofiber networks, which provide sufficient void space to accommodate a large amount of Li and buffer the volume changes during Li plating and stripping. More importantly, homogeneously distributed oxygen-containing functional groups on the nanofiber surface are retained by controlling the carbonization temperature. These functional groups serve as uniform nucleation sites and help realize uniform and dendrite-free Li deposition. Notably, the areal mass density of the 3D carbon current collector was only 0.32 mg.cm(-2) and its mass ratio in the whole anode was 28.8%, with a capacity of 3 mAh.cm(-2). This 3D carbon current collector facilitates the stable working of the half cells for 150 cycles under a high current density of 3 mA.cm(-2) or a high capacity of 4 mAh.cm(-2). Symmetric cells exhibit a steady cycling life as long as 600 h under a current density of 1 mA.cm(-2) and a capacity of 1 mAh.cm(-2). Moreover, appreciable cycling performance was realized in the full cells when the anodes were paired with LiNi0.8Co0.15Al0.05 cathodes. Furthermore, the low-cost raw materials and the simple preparation method promise significant potential for the future applications of the proposed 3D current collectors.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 44 条
[1]   A soft, multilayered lithium-electrolyte interface [J].
Bucur, Claudiu B. ;
Lita, Adrian ;
Osada, Naoki ;
Muldoon, John .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :112-116
[2]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[5]   A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite [J].
Feng, Yiyu ;
Zhang, Xuequan ;
Shen, Yongtao ;
Yoshino, Katsumi ;
Feng, Wei .
CARBOHYDRATE POLYMERS, 2012, 87 (01) :644-649
[6]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[7]   Chemically anchored NiOx-carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity [J].
Gong, Yanli ;
Zhang, Ming ;
Cao, Guozhong .
RSC ADVANCES, 2015, 5 (34) :26521-26529
[8]   Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion [J].
Guan, Pengjian ;
Liu, Lin ;
Lin, Xianke .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :A1798-A1808
[9]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/NMAT4821, 10.1038/nmat4821]
[10]   3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Luo, Jianmin ;
Yuan, Huadong ;
Fang, Cong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2017, 37 :177-186