Generalized Morrey Spaces - Revisited

被引:7
作者
Akbulut, Ali [1 ]
Guliyev, Vagif Sabir [1 ,2 ]
Noi, Takahiro [3 ]
Sawano, Yoshihiro [3 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Inst Math & Mech, Baku, Azerbaijan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2017年 / 36卷 / 01期
关键词
generalized Morrey spaces; decomposition; maximal operators; FRACTIONAL MAXIMAL OPERATORS; SINGULAR INTEGRAL-OPERATORS; BESOV-MORREY; DECOMPOSITION; BOUNDEDNESS; EMBEDDINGS;
D O I
10.4171/ZAA/1577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized Morrey space M-p,M-phi(R-n) was defined by Mizuhara 1991 and Nakai in 1994. It is equipped with a parameter 0 < p < infinity and a function phi : R-n x (0, infinity) -> (0, infinity). Our experience shows that M-p,M-phi(R-n) is easy to handle when 1 < p < infinity. However, when 0 < p <= 1, the function space M-p,M-phi(R-n) is difficult to handle as many examples show. We propose a way to deal with M-p,M-phi(R-n) for 0 < p <= 1, in particular, to obtain some estimates of the Hardy-Littlewood maximal operator on these spaces. Especially, the vector-valued estimates obtained in the earlier papers are refined. The key tool is the weighted dual Hardy operator. Much is known on the weighted dual Hardy operator.
引用
收藏
页码:17 / 35
页数:19
相关论文
共 41 条
[1]  
Akbulut A, 2012, MATH BOHEM, V137, P27
[2]  
[Anonymous], 2005, P A RAZMADZE MATH I
[3]  
[Anonymous], 1984, NUMERICAL METHODS QU
[4]  
[Anonymous], 1994, THESIS
[5]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[6]  
[曹勇辉 CAO Yonghui], 2009, [数学进展, Advances in Mathematics], V38, P629
[7]  
Chiarenza F., 1987, Rend. Mat, V7, P273
[8]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[9]  
Guliyev V., 2009, J. Inequal. Appl, DOI DOI 10.1155/2009/503948
[10]  
Guliyev VS, 2013, AZERBAIJAN J MATH, V3, P79