Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries

被引:323
作者
Ghazi, Zahid Ali [1 ]
Sun, Zhenhua [1 ]
Sun, Chengguo [1 ,2 ]
Qi, Fulai [1 ]
An, Baigang [2 ]
Li, Feng [1 ]
Cheng, Hui-Ming [1 ,3 ]
机构
[1] Chinese Acad Sci Shenyang, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Chem Engn, Anshan 114051, Peoples R China
[3] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Coulombic efficiency; dendrite growth; lithium anode; rechargeable batteries; volume expansion; SOLID-ELECTROLYTE INTERPHASE; GEL POLYMER ELECTROLYTES; COMPOSITE PROTECTIVE LAYER; POROUS CURRENT COLLECTOR; LONG-CYCLE-LIFE; ION BATTERIES; ELECTRICAL-PROPERTIES; ELECTROCHEMICAL DEPOSITION; FLUOROETHYLENE CARBONATE; NONAQUEOUS ELECTROLYTE;
D O I
10.1002/smll.201900687
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable batteries are considered promising replacements for environmentally hazardous fossil fuel-based energy technologies. High-energy lithium-metal batteries have received tremendous attention for use in portable electronic devices and electric vehicles. However, the low Coulombic efficiency, short life cycle, huge volume expansion, uncontrolled dendrite growth, and endless interfacial reactions of the metallic lithium anode are major obstacles in their commercialization. Extensive research efforts have been devoted to address these issues and significant progress has been made by tuning electrolyte chemistry, designing electrode frameworks, discovering nanotechnology-based solutions, etc. This Review aims to provide a conceptual understanding of the current issues involved in using a lithium metal anode and to unveil its electrochemistry. The most recent advancements in lithium metal battery technology are outlined and suggestions for future research to develop a safe and stable lithium anode are presented.
引用
收藏
页数:26
相关论文
共 245 条
[1]   RECENT DEVELOPMENTS IN SECONDARY LITHIUM BATTERY TECHNOLOGY [J].
ABRAHAM, KM .
JOURNAL OF POWER SOURCES, 1985, 14 (1-3) :179-191
[2]   Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling [J].
Albertus, Paul ;
Girishkumar, G. ;
McCloskey, Bryan ;
Sanchez-Carrera, Roel S. ;
Kozinsky, Boris ;
Christensen, Jake ;
Luntz, A. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A343-A351
[3]   The use of in situ techniques in R&D of Li and Mg rechargeable batteries [J].
Amalraj, S. Francis ;
Aurbach, Doron .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (05) :877-890
[4]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[5]   Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Xu, Xiaoyan ;
Ci, Lijie ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
NANO ENERGY, 2018, 47 :503-511
[6]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[7]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[8]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[9]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[10]   CORRELATION BETWEEN SURFACE-CHEMISTRY, MORPHOLOGY, CYCLING EFFICIENCY AND INTERFACIAL PROPERTIES OF LI ELECTRODES IN SOLUTIONS CONTAINING DIFFERENT LI SALTS [J].
AURBACH, D ;
WEISSMAN, I ;
ZABAN, A ;
CHUSID, O .
ELECTROCHIMICA ACTA, 1994, 39 (01) :51-71