PrivacyEye: A Privacy-Preserving and Computationally Efficient Deep Learning-Based Mobile Video Analytics System

被引:7
|
作者
Du, Wei [1 ]
Li, Ang [2 ]
Zhou, Pan [3 ]
Niu, Ben [4 ]
Wu, Dapeng [5 ]
机构
[1] Univ Arkansas, Dept Comp Sci & Comp Engn, Fayetteville, AR 72701 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[4] Chinese Acad Sci, Inst Informat Engn, Beijing 100864, Peoples R China
[5] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Data mining; Task analysis; Color; Servers; Histograms; Privacy; Privacy protection; efficient mobile computing; deep learning; video analytics;
D O I
10.1109/TMC.2021.3050458
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large volumes of video data recorded by the increasing mobile devices and embedded sensors can be leveraged to answer queries of our lives, physical world and our evolving society. Especially, the rapid development of convolutional neural networks (CNNs) in the past few years offers the great advantage for multiple tasks in video analysis. However, adopting running CNNs directly on mobile devices and embedded sensors for video analytics brings heavy burden due to their limited capacity, especially for learning a large volume of data. A promising approach is to outsource the computation-intensive part of CNN to cloud. However, the reveal of data to cloud may cause privacy leakage. In addition, the cloud-assisted approach may also bring some communication efficiency challenges for large volume of data. To address both privacy and efficiency issues, we design a privacy-preserving and computationally efficient framework for mobile video analytics. To protect the private information, we split the CNN model into two subnetworks, and first part is used as a feature extractor deployed in the mobile side and the second part is utilized as a classifier deployed in the cloud side. A specific-designed adversarial training process is adopted in order to extract features for normal task classification while hiding the features for sensitive task. In addition, to improve video process efficiency, we design a two-stage framework. The first stage is to extract key frames and necessary intermediate frames, while skipping redundant ones. The second stage is to extract the features of key frames by CNN-based feature extractor but apply optical-flow-based feature propagation algorithm to obtain the features of intermediate frames. Extensive experiments demonstrate our proposed system PrivacyEye can effectively protect private information while keep the accuracy of the normal tasks with less than 2 percent drop, and it saves up to 82.9 percent execution time and 78.8 percent energy consumption.
引用
收藏
页码:3263 / 3279
页数:17
相关论文
共 50 条
  • [21] Efficient Privacy-Preserving Machine Learning in Hierarchical Distributed System
    Jia, Qi
    Guo, Linke
    Fang, Yuguang
    Wang, Guirong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (04): : 599 - 612
  • [22] Towards a resource efficient and privacy-preserving framework for campus-wide video analytics-based applications
    Gupta, Ankur
    Prabhat, Purnendu
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 161 - 176
  • [23] Efficient Privacy-Preserving Federated Learning With Unreliable Users
    Li, Yiran
    Li, Hongwei
    Xu, Guowen
    Huang, Xiaoming
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11590 - 11603
  • [24] Deep Learning-Based Brain Tumor Detection in Privacy-Preserving Smart Health Care Systems
    Lata, Kusum
    Singh, Prashant
    Saini, Sandeep
    Cenkeramaddi, Linga Reddy
    IEEE ACCESS, 2024, 12 : 140722 - 140733
  • [25] Privacy-Preserving of Human Identification in CCTV Data using a Novel Deep Learning-Based Method
    Mukhiddin, Toshpulatov
    Arousha, Haghighian Roudsari
    Ubaydullo, Asatullaev
    Wookey, Lee
    Lee, Suan
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 211 - 214
  • [26] Privacy-Preserving in the Context of Data Mining and Deep Learning
    Altalhi, Amjaad
    Al-Saedi, Maram
    Alsuwat, Hatim
    Alsuwat, Emad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 137 - 142
  • [27] Towards a resource efficient and privacy-preserving framework for campus-wide video analytics-based applications
    Ankur Gupta
    Purnendu Prabhat
    Complex & Intelligent Systems, 2023, 9 : 161 - 176
  • [28] Privacy-Preserving Deep Learning for Enabling Big Edge Data Analytics in Internet of Things
    Guo, Mnigming
    Pissinou, Niki
    Iyengar, S. S.
    2019 TENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2019,
  • [29] An Efficient and Privacy-preserving Similarity Evaluation For Big Data Analytics
    Gheid, Zakaria
    Challal, Yacine
    2015 IEEE/ACM 8TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC), 2015, : 281 - 289
  • [30] DeepChain: Auditable and Privacy-Preserving Deep Learning with Blockchain-Based Incentive
    Weng, Jiasi
    Weng, Jian
    Zhang, Jilian
    Li, Ming
    Zhang, Yue
    Luo, Weiqi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2021, 18 (05) : 2438 - 2455