Exact Minimax Estimation for Phase Synchronization

被引:6
作者
Gao, Chao [1 ]
Zhang, Anderson Y. [2 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Penn, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
关键词
Angular synchronization; minimax risk; power method; maximum likelihood estimator; CRAMER-RAO BOUNDS; MATRICES;
D O I
10.1109/TIT.2021.3112712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
study the phase synchronization problem with measurements Y = z* z*(H) + sigma W is an element of C-nxn, where z* is an n-dimensional complex unit-modulus vector and W is a complexvalued Gaussian random matrix. It is assumed that each entry Y-jk is observed with probability p. We prove that the minimax lower bound of estimating z* under the squared l(2) loss is (1-o(1)) sigma(2)/2p. We also show that both generalized power method and maximum likelihood estimator achieve the error bound (1+o(1)) sigma(2)/2p. Thus, sigma(2)/2p is the exact asymptotic minimax error of the problem. Our upper bound analysis involves a precise characterization of the statistical property of the power iteration. The lower bound is derived through an application of van Trees' inequality.
引用
收藏
页码:8236 / 8247
页数:12
相关论文
共 23 条
[1]  
Abbe E., 2017, ARXIV170608561
[2]  
[Anonymous], 2016, ARXIV160905573
[3]   Tightness of the maximum likelihood semidefinite relaxation for angular synchronization [J].
Bandeira, Afonso S. ;
Boumal, Nicolas ;
Singer, Amit .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :145-167
[4]   SHARP NONASYMPTOTIC BOUNDS ON THE NORM OF RANDOM MATRICES WITH INDEPENDENT ENTRIES [J].
Bandeira, Afonso S. ;
van Handel, Ramon .
ANNALS OF PROBABILITY, 2016, 44 (04) :2479-2506
[5]   NONCONVEX PHASE SYNCHRONIZATION [J].
Boumal, Nicolas .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (04) :2355-2377
[6]   Concentration of the Kirchhoff index for Erdos-Renyi graphs [J].
Boumal, Nicolas ;
Cheng, Xiuyuan .
SYSTEMS & CONTROL LETTERS, 2014, 74 :74-80
[7]   Cramer-Rao bounds for synchronization of rotations [J].
Boumal, Nicolas ;
Singer, Amit ;
Absil, P. -A. ;
Blondel, Vincent D. .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (01) :1-39
[8]   On Intrinsic Cramer-Rao Bounds for Riemannian Submanifolds and Quotient Manifolds [J].
Boumal, Nicolas .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (07) :1809-1821
[9]  
Filbir F, 2020, ARXIV200502032
[10]  
Gao C, 2016, J MACH LEARN RES, V17