Estimation of Conditional Mixture Weibull Distribution with Right Censored Data Using Neural Network for Time-to-Event Analysis

被引:9
作者
Bennis, Achraf [1 ]
Mouysset, Sandrine [1 ]
Serrurier, Mathieu [1 ]
机构
[1] IRIT Univ Toulouse III Paul Sabatier, F-31330 Toulouse, France
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I | 2020年 / 12084卷
关键词
Survival analysis; Weibull distribution; Neural network;
D O I
10.1007/978-3-030-47426-3_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider survival analysis with right-censored data which is a common situation in predictive maintenance and health field. We propose a model based on the estimation of two-parameter Weibull distribution conditionally to the features. To achieve this result, we describe a neural network architecture and the associated loss functions that takes into account the right-censored data. We extend the approach to a finite mixture of two-parameter Weibull distributions. We first validate that our model is able to precisely estimate the right parameters of the conditional Weibull distribution on synthetic datasets. In numerical experiments on two real-word datasets (METABRIC and SEER), our model outperforms the state-of-the-art methods. We also demonstrate that our approach can consider any survival time horizon.
引用
收藏
页码:687 / 698
页数:12
相关论文
共 15 条
[1]  
Bacha M., 1996, Bayesian estimation of a weibull distribution in a highly censored and small sample setting
[2]   Improving Breast Cancer Survival Analysis through Competition-Based Multidimensional Modeling [J].
Bilal, Erhan ;
Dutkowski, Janusz ;
Guinney, Justin ;
Jang, In Sock ;
Logsdon, Benjamin A. ;
Pandey, Gaurav ;
Sauerwine, Benjamin A. ;
Shimoni, Yishai ;
Vollan, Hans Kristian Moen ;
Mecham, Brigham H. ;
Rueda, Oscar M. ;
Tost, Jorg ;
Curtis, Christina ;
Alvarez, Mariano J. ;
Kristensen, Vessela N. ;
Aparicio, Samuel ;
Borresen-Dale, Anne-Lise ;
Caldas, Carlos ;
Califano, Andrea ;
Friend, Stephen H. ;
Ideker, Trey ;
Schadt, Eric E. ;
Stolovitzky, Gustavo A. ;
Margolin, Adam A. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (05)
[3]  
COX DR, 1972, J R STAT SOC B, V34, P187
[4]   A NEURAL-NETWORK MODEL FOR SURVIVAL-DATA [J].
FARAGGI, D ;
SIMON, R .
STATISTICS IN MEDICINE, 1995, 14 (01) :73-82
[5]   PARAMETER ESTIMATION FOR WEIBULL DISTRIBUTION WITH RIGHT CENSORED DATA USING EM ALGORITHM [J].
Ferreira, Luis Andrade ;
Silva, Jose Luis .
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2017, 19 (02) :310-315
[6]   EVALUATING THE YIELD OF MEDICAL TESTS [J].
HARRELL, FE ;
CALIFF, RM ;
PRYOR, DB ;
LEE, KL ;
ROSATI, RA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1982, 247 (18) :2543-2546
[7]   RANDOM SURVIVAL FORESTS [J].
Ishwaran, Hemant ;
Kogalur, Udaya B. ;
Blackstone, Eugene H. ;
Lauer, Michael S. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :841-860
[8]  
Katzman J., 2016, STAT-US
[9]  
Lee C, 2018, AAAI CONF ARTIF INTE, P2314
[10]  
Liao Linxia., 2016, International Journal of Prognostics and Health Management, DOI DOI 10.1109/CBMS.2010.6042612