Regular packings of PG(3,q)

被引:30
作者
Penttila, T [1 ]
Williams, B [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6907, Australia
关键词
D O I
10.1006/eujc.1998.0239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two regular packings of PG(3, q) are constructed whenever q = 2 (mod 3), with each packing admitting a cyclic group of order q(2) + q + 1 acting regularly on the regular spreads in the packing. The resulting families of translation planes of order q(4) include the Lorimer-Rahilly and Johnson-walker planes of order 16. (C) 1998 Academic Press.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 20 条
[1]  
BEUTELSPACHER A, 1974, GEOMETRIAE DEDICATA, V3, P35
[2]  
DENNISTON RHF, 1973, REND ACCAD NAZ LINCE, V54, P373
[3]  
Hartley RW, 1926, ANN MATH, V27, P140
[4]  
HIRSCHFIELD JWP, 1985, FINITE PROJECTIVE SP
[5]  
Huppert B., 1967, Endliche Gruppen I, VI
[6]   REGULAR PARALLELISMS FROM TRANSLATION-PLANES [J].
JHA, V ;
JOHNSON, NL .
DISCRETE MATHEMATICS, 1986, 59 (1-2) :91-97
[7]  
JOHNSON NL, 1984, CAN J MATH, V36, P769
[8]  
Kleidman P, 1990, LONDON MATH SOC LECT, V129
[9]   ON REGULAR PARALLELISMS IN PG(3,Q) [J].
LUNARDON, G .
DISCRETE MATHEMATICS, 1984, 51 (03) :229-235
[10]   Determination of the ordinary and modular ternary linear groups [J].
Mitchell, HH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1911, 12 :207-242