Enhancement of Ammonia Synthesis on a Co3Mo3N-Ag Electrocatalyst in a K-βAl2O3 Solid Electrolyte Cell

被引:17
|
作者
Diez-Ramirez, J. [1 ]
Kyriakou, V. [2 ,3 ]
Garagounis, I. [2 ,3 ]
Vourros, A. [2 ,3 ]
Vasileiou, E. [2 ,3 ]
Sanchez, P. [1 ]
Dorado, F. [1 ]
Stoukides, M. [2 ,3 ]
机构
[1] Fac Ciencias & Tecnol Quim, Dept Ingn Quim, Ave Camilo Jose Cela 12, Ciudad Real 13071, Spain
[2] Aristotle Univ Thessaloniki, Dept Chem Engn, Thessaloniki 54124, Greece
[3] CERTH, Chem Proc & Energy Resources Inst, Thessaloniki 56071, Greece
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2017年 / 5卷 / 10期
关键词
Ammonia synthesis; Nitride catalysts; Electrochemical promotion; K-beta ''-Al2O3; Cation electrochemical promotion of catalysis; BIMETALLIC NITRIDE CATALYSTS; SITU ELECTROCHEMICAL MODIFICATION; NH3; DECOMPOSITION; IONIC CONDUCTORS; PROMOTION; COMBUSTION; SYSTEM; NEMCA; NA;
D O I
10.1021/acssuschemeng.7b01618
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical promotion of ammonia synthesis by potassium ions (K+) on a Co3Mo3N-Ag electrocatalyst was studied in a K-beta ''-Al2O3 solid electrolyte cell. The effect of temperature (400-550 degrees C), P-H2/P-N2, feed composition (1.0, 3.0 and 6.0) and applied voltage was explored in detail. The catalyst was prepared by ammonolysis of the mixed oxide and was characterized by XRD and SEM. A volcano-type behavior was found, i.e., around 1% of potassium per total moles of Co3Mo3N improved the ammonia formation rate by as much as 48%. However, high percentages of potassium act as poison for the reaction, possibly due to the formation of K-N-H compounds that block the active sites. Faradaic efficiency (Lambda) values close to 300 are for the first time reported in NH3 synthesis.
引用
收藏
页码:8844 / 8851
页数:8
相关论文
共 50 条
  • [21] A viscosity model for the (NaF + AlF3 + CaF2 + Al2O3) electrolyte
    Roblin, Christian
    Chartrand, Patrice
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (05) : 764 - 774
  • [22] Electrochemical Synthesis of Ammonia Using Fe3Mo3N Catalyst and Carbonate-Oxide Composite Electrolyte
    Amar, Ibrahim A.
    Lan, Rong
    Petit, Christophe T. G.
    Tao, Shanwen
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (05): : 3757 - 3766
  • [23] Low-temperature synthesis of α-Al2O3
    Dudnik, E. V.
    Shevchenko, A. V.
    Ruban, A. K.
    Red'ko, V. P.
    Lopato, L. M.
    POWDER METALLURGY AND METAL CERAMICS, 2008, 47 (7-8) : 379 - 383
  • [24] Low-temperature synthesis of α-Al2O3
    E. V. Dudnik
    A. V. Shevchenko
    A. K. Ruban
    V. P. Red’ko
    L. M. Lopato
    Powder Metallurgy and Metal Ceramics, 2008, 47 : 379 - 383
  • [25] Effect of combustion gas components on electrochemically promoted CO2 capture performance of Pt/K-βAl2O3 at bench scale
    Ruiz, Esperanza
    Martinez, Pedro J.
    Morales, Angel
    San Vicente, Gema
    de Diego, Gonzalo
    Sanchez, Jose M.
    ELECTROCHIMICA ACTA, 2016, 188 : 184 - 196
  • [26] Tuning the catalytic performance of Fischer-Tropsch synthesis by regulating the Al2O3-layer over Co/Al2O3/Al catalysts
    Zhong, Min
    Yang, Pengju
    Hou, Bo
    Xia, Ming
    Wang, Jungang
    FUEL, 2022, 314
  • [27] Synthesis mechanism of AlN-SiC solid solution reinforced Al2O3 composite by two-step nitriding of Al-Si3N4-Al2O3 compact at 1500 °C
    Ma, Chenhong
    Li, Yong
    Wu, Xiaofang
    Gao, Yuan
    CERAMICS INTERNATIONAL, 2023, 49 (13) : 22022 - 22029
  • [28] Stability of 3CaO•Al2O3•6H2O in KOH+K2CO3+H2O system for chromate production
    Wang, Shaona
    Zheng, Shili
    Zhang, Yi
    HYDROMETALLURGY, 2008, 90 (2-4) : 201 - 206
  • [29] Synthesis of Ni/Al2O3 and Ni-Co/Al2O3 coatings onto AISI 314 foams and their catalytic application for the oxidative dehydrogenation of ethane
    Bortolozzi, J. P.
    Gutierrez, L. B.
    Ulla, M. A.
    APPLIED CATALYSIS A-GENERAL, 2013, 452 : 179 - 188
  • [30] Combustion in the Cu(NO3)2−Al(NO3)3−H2O–Polyvinyl Alcohol System: Synthesis of CuO/Al2O3
    V. D. Zhuravlev
    K. V. Nefedova
    Sh. M. Khaliullin
    I. V. Baklanova
    L. Yu. Buldakova
    Combustion, Explosion, and Shock Waves, 2019, 55 : 167 - 176