Fractional Sobolev-Hardy inequality in RN

被引:37
作者
Yang, Jianfu [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Sobolev-Hardy inequality; Minimizer; Radial symmetry; Decaying law; CONSTANTS;
D O I
10.1016/j.na.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the minimizing problem Lambda(s,alpha) = inf(u(H) over dots(RN), u not equivalent to 0) integral(RN)vertical bar-Delta(s/2)u(x)vertical bar(2) dx/(integral(RN)vertical bar u(x)vertical bar(2)*(s,alpha)/vertical bar x vertical bar(alpha) dx)(2/2)*(s,alpha) (1) is achieved by a positive, radially symmetric and strictly decreasing function provided 0 < s < N/2, 0 < alpha < 2s. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [41] CLASSIFICATION OF POSITIVE SOLUTIONS TO A SYSTEM OF HARDY-SOBOLEV TYPE EQUATIONS
    戴蔚
    刘招
    Acta Mathematica Scientia, 2017, (05) : 1415 - 1436
  • [42] Sharp Hardy-Littlewood-Sobolev inequalities on the octonionic Heisenberg group
    Christ, Michael
    Liu, Heping
    Zhang, An
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) : 1 - 18
  • [43] Sharp Hardy-Sobolev Inequalities with General Weights and Remainder Terms
    Shen, Yaotian
    Chen, Zhihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [44] Functional aspects of the Hardy inequality: appearance of a hidden energy
    Luis Vazquez, Juan
    Zographopoulos, Nikolaos B.
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (03) : 713 - 739
  • [45] Weighted Hardy-Rellich Inequality for Dunkl Operators
    Lyu, Jielin
    Jin, Yongyang
    Shen, Shoufeng
    Tang, Li
    MATHEMATICS, 2023, 11 (06)
  • [46] Functional Aspects of the Hardy Inequality: Appearance of a Hidden Energy
    Vazquez, J. L.
    Zographopoulos, N. B.
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 653 - 665
  • [47] Sobolev inequalities for fractional Neumann Laplacians on half spaces
    Musina, Roberta
    Nazarov, Alexander, I
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (01) : 127 - 145
  • [48] An overview on extremals and critical points of the Sobolev inequality in convex cones
    Roncoroni, Alberto
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2022, 33 (04) : 967 - 995
  • [49] Analytical approach of the symmetry: Sharp supercritical Hardy-Sobolev inequalities and applications
    Cotsiolis, Athanase
    Labropoulos, Nikos
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 171 : 134 - 155
  • [50] Radial symmetry and monotonicity for fractional Henon equation in Rn
    Wang, Pengyan
    Dai, Zhaohui
    Cao, Linfen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (12) : 1685 - 1695