Fractional Sobolev-Hardy inequality in RN

被引:37
|
作者
Yang, Jianfu [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Sobolev-Hardy inequality; Minimizer; Radial symmetry; Decaying law; CONSTANTS;
D O I
10.1016/j.na.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the minimizing problem Lambda(s,alpha) = inf(u(H) over dots(RN), u not equivalent to 0) integral(RN)vertical bar-Delta(s/2)u(x)vertical bar(2) dx/(integral(RN)vertical bar u(x)vertical bar(2)*(s,alpha)/vertical bar x vertical bar(alpha) dx)(2/2)*(s,alpha) (1) is achieved by a positive, radially symmetric and strictly decreasing function provided 0 < s < N/2, 0 < alpha < 2s. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [21] Hardy inequality and trace Hardy inequality for Dunkl gradient
    Anoop, V. P.
    Parui, Sanjay
    COLLECTANEA MATHEMATICA, 2019, 70 (03) : 367 - 398
  • [22] Kato Smoothing, Strichartz and Uniform Sobolev Estimates for Fractional Operators With Sharp Hardy Potentials
    Mizutani, Haruya
    Yao, Xiaohua
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 581 - 623
  • [23] Sharp Reversed Hardy-Littlewood-Sobolev Inequality on the Half Space R+n
    Quoc Anh Ngo
    Van Hoang Nguyen
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6187 - 6230
  • [24] Stability for the logarithmic Hardy-Littlewood-Sobolev inequality with application to the Keller-Segel equation
    Carlen, Eric A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (06)
  • [25] Symmetry of positive solutions of fractional Laplacian equation and system with Hardy–Sobolev exponent on the unit ball
    Junping Zhao
    Jingbo Dou
    Huaiyu Zhou
    Journal of Pseudo-Differential Operators and Applications, 2015, 6 : 503 - 519
  • [26] A logarithmic Hardy inequality
    del Pino, Manuel
    Dolbeault, Jean
    Filippas, Stathis
    Tertikas, Achilles
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) : 2045 - 2072
  • [27] Quasilinear Elliptic Systems Involving Critical Hardy-Sobolev and Sobolev Exponents
    Kang, Dongsheng
    Kang, Yangguang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) : 1 - 17
  • [28] Improved Sobolev Inequality Under Constraints
    Hang, Fengbo
    Wang, Xiaodong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (14) : 10822 - 10857
  • [29] On the polynomial Hardy-Littlewood inequality
    Araujo, G.
    Jimenez-Rodriguez, P.
    Munoz-Fernandez, G. A.
    Nunez-Alarcon, D.
    Pellegrino, D.
    Seoane-Sepulveda, J. B.
    Serrano-Rodriguez, D. M.
    ARCHIV DER MATHEMATIK, 2015, 104 (03) : 259 - 270
  • [30] Nonlinear biharmonic equation with Hardy-Sobolev potential
    He, Xibing
    Zhang, Yupei
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING (MSMEE 2017), 2017, 123 : 1678 - 1684