Birational transformations preserving rational solutions of algebraic ordinary differential equations

被引:9
作者
Ngo, L. X. C. [1 ]
Sendra, J. R. [2 ]
Winkler, F. [3 ]
机构
[1] Quy Nhon Univ, Dept Math, Quy Nhon, Vietnam
[2] Univ Alcala, Dept Fis & Matemat, E-28871 Madrid, Spain
[3] Johannes Kepler Univ Linz, RISC, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Algebraic differential equation; Rational solution; Integral birational transformation; Integral curve; Rational parametrization; GENERAL-SOLUTIONS; SYSTEMS;
D O I
10.1016/j.cam.2015.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the set of all rational transformations with the property of preserving the existence of rational solutions of algebraic ordinary differential equations (AODEs). This set is a group under composition and, by its action, partitions the set of AODEs into equivalence classes for which the existence of rational solutions is an invariant property. Moreover, we describe how the rational solutions, if any, of two different AODEs in the same class are related. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 127
页数:14
相关论文
共 20 条
  • [1] [Anonymous], 2012, COMPUTATIONAL ALGEBR
  • [2] [Anonymous], 2012, RISC REPORT SERIES
  • [3] Cohen A. M., 1999, ALGORITHMS COMPUTATI, V4
  • [4] Eremenko A, 1998, ANN ACAD SCI FENN-M, V23, P181
  • [5] Feng R., 2004, P ISSAC 14 P 2004 IN, P155
  • [6] A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs
    Feng, Ruyong
    Gao, Xiao-Shan
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (07) : 739 - 762
  • [7] Grasegger G., 2014, P ISSAC 14 P 39 INT, P217
  • [8] Grasegger G, 2014, LECT NOTES COMPUT SC, V8660, P111, DOI 10.1007/978-3-319-10515-4_9
  • [9] Rational General Solutions of Trivariate Rational Differential Systems
    Huang, Yanli
    Ngo, L. X. Chau
    Winkler, Franz
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2012, 6 (04) : 361 - 374
  • [10] Rational general solutions of higher order algebraic odes
    Huang Yanli
    Ngo, L. X. Chau
    Winkler, Franz
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (02) : 261 - 280