SAU-Net: A Unified Network for Cell Counting in 2D and 3D Microscopy Images

被引:17
|
作者
Guo, Yue [1 ]
Krupa, Oleh [2 ]
Stein, Jason [3 ]
Wu, Guorong [4 ]
Krishnamurthy, Ashok [1 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Three-dimensional displays; Computer architecture; Microprocessors; Benchmark testing; Training; Annotations; Kernel; Cell counting; batch normalization; deep learning; neural networks;
D O I
10.1109/TCBB.2021.3089608
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Image-based cell counting is a fundamental yet challenging task with wide applications in biological research. In this paper, we propose a novel unified deep network framework designed to solve this problem for various cell types in both 2D and 3D images. Specifically, we first propose SAU-Net for cell counting by extending the segmentation network U-Net with a Self-Attention module. Second, we design an extension of Batch Normalization (BN) to facilitate the training process for small datasets. In addition, a new 3D benchmark dataset based on the existing mouse blastocyst (MBC) dataset is developed and released to the community. Our SAU-Net achieves state-of-the-art results on four benchmark 2D datasets - synthetic fluorescence microscopy (VGG) dataset, Modified Bone Marrow (MBM) dataset, human subcutaneous adipose tissue (ADI) dataset, and Dublin Cell Counting (DCC) dataset, and the new 3D dataset, MBC. The BN extension is validated using extensive experiments on the 2D datasets, since GPU memory constraints preclude use of 3D datasets. The source code is available at https://github.com/mzlr/sau-net.
引用
收藏
页码:1920 / 1932
页数:13
相关论文
共 50 条
  • [1] SAU-Net: A Universal Deep Network for Cell Counting
    Guo, Yue
    Stein, Jason
    Wu, Guorong
    Krishnamurthy, Ashok
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 299 - 306
  • [2] SAU-Net: Efficient 3D Spine MRI Segmentation Using Inter-Slice Attention
    Zhang, Yichi
    Yuan, Lin
    Wang, Yujia
    Zhang, Jicong
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 903 - 913
  • [3] SAU-Net: Efficient 3D Spine MRI Segmentation Using Inter-Slice Attention
    Zhang, Yichi
    Yuan, Lin
    Wang, Yujia
    Zhang, Jicong
    Proceedings of Machine Learning Research, 2020, 121 : 903 - 913
  • [4] A new method to estimate 3D cell parameters from 2D microscopy images
    Urbaniak, P.
    Wronski, S.
    Tarasiuk, J.
    Lipinski, P.
    Kotwicka, M.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2022, 1869 (09):
  • [5] A new method to estimate 3D cell parameters from 2D microscopy images
    Urbaniak, P.
    Wronski, S.
    Tarasiuk, J.
    Lipinski, P.
    Kotwicka, M.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2022, 1869 (09):
  • [6] 3D IMAGES WITH 2D FOOTPRINT
    Ferre Ferri, Enrique
    REVISTA SONDA-INVESTIGACION Y DOCENCIA EN ARTES Y LETRAS, 2020, (09): : 73 - 82
  • [7] Estimating 3D Objects from 2D Images using 3D Transformation Network
    Ul Islam, Naeem
    Park, Jaebyung
    2021 18TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2021, : 471 - 475
  • [8] A DIFFUSION MODEL PREDICTS 3D SHAPES FROM 2D MICROSCOPY IMAGES
    Waibel, Dominik J. E.
    Roeell, Ernst
    Rieck, Bastian
    Giryes, Raja
    Marr, Carsten
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [9] 3D Structure From 2D Microscopy Images Using Deep Learning
    Blundell, Benjamin
    Sieben, Christian
    Manley, Suliana
    Rosten, Ed
    Ch'ng, Queelim
    Cox, Susan
    FRONTIERS IN BIOINFORMATICS, 2021, 1
  • [10] Electron microscopy: from 2D to 3D images with special reference to muscle
    Franzini-Armstrong, Clara
    EUROPEAN JOURNAL OF TRANSLATIONAL MYOLOGY, 2015, 25 (01) : 5 - 13