SAU-Net: A Unified Network for Cell Counting in 2D and 3D Microscopy Images

被引:17
作者
Guo, Yue [1 ]
Krupa, Oleh [2 ]
Stein, Jason [3 ]
Wu, Guorong [4 ]
Krishnamurthy, Ashok [1 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Three-dimensional displays; Computer architecture; Microprocessors; Benchmark testing; Training; Annotations; Kernel; Cell counting; batch normalization; deep learning; neural networks;
D O I
10.1109/TCBB.2021.3089608
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Image-based cell counting is a fundamental yet challenging task with wide applications in biological research. In this paper, we propose a novel unified deep network framework designed to solve this problem for various cell types in both 2D and 3D images. Specifically, we first propose SAU-Net for cell counting by extending the segmentation network U-Net with a Self-Attention module. Second, we design an extension of Batch Normalization (BN) to facilitate the training process for small datasets. In addition, a new 3D benchmark dataset based on the existing mouse blastocyst (MBC) dataset is developed and released to the community. Our SAU-Net achieves state-of-the-art results on four benchmark 2D datasets - synthetic fluorescence microscopy (VGG) dataset, Modified Bone Marrow (MBM) dataset, human subcutaneous adipose tissue (ADI) dataset, and Dublin Cell Counting (DCC) dataset, and the new 3D dataset, MBC. The BN extension is validated using extensive experiments on the 2D datasets, since GPU memory constraints preclude use of 3D datasets. The source code is available at https://github.com/mzlr/sau-net.
引用
收藏
页码:1920 / 1932
页数:13
相关论文
共 47 条
[1]   Detecting overlapping instances in microscopy images using extremal region trees [J].
Arteta, Carlos ;
Lempitsky, Victor ;
Noble, J. Alison ;
Zisserman, Andrew .
MEDICAL IMAGE ANALYSIS, 2016, 27 :3-16
[2]  
Arteta C, 2014, LECT NOTES COMPUT SC, V8691, P504, DOI 10.1007/978-3-319-10578-9_33
[3]  
Arteta C, 2012, LECT NOTES COMPUT SC, V7510, P348, DOI 10.1007/978-3-642-33415-3_43
[4]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[5]   Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development [J].
Bernier, Raphael ;
Golzio, Christelle ;
Xiong, Bo ;
Stessman, Holly A. ;
Coe, Bradley P. ;
Penn, Osnat ;
Witherspoon, Kali ;
Gerdts, Jennifer ;
Baker, Carl ;
Vulto-van Silfhout, Anneke T. ;
Schuurs-Hoeijmakers, Janneke H. ;
Fichera, Marco ;
Bosco, Paolo ;
Buono, Serafino ;
Alberti, Antonino ;
Failla, Pinella ;
Peeters, Hilde ;
Steyaert, Jean ;
Vissers, Lisenka E. L. M. ;
Francescatto, Ludmila ;
Mefford, Heather C. ;
Rosenfeld, Jill A. ;
Bakken, Trygve ;
O'Roak, Brian J. ;
Pawlus, Matthew ;
Moon, Randall ;
Shendure, Jay ;
Amaral, David G. ;
Lein, Ed ;
Rankin, Julia ;
Romano, Corrado ;
de Vries, Bert B. A. ;
Katsanis, Nicholas ;
Eichler, Evan E. .
CELL, 2014, 158 (02) :263-276
[6]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[7]   Count-ception: Counting by Fully Convolutional Redundant Counting [J].
Cohen, Joseph Paul ;
Boucher, Genevieve ;
Glastonbury, Craig A. ;
Lo, Henry Z. ;
Bengio, Yoshua .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :18-26
[8]   Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions [J].
Dumur, Tao ;
Duncan, Susan ;
Graumann, Katja ;
Desset, Sophie ;
Randall, Ricardo S. ;
Scheid, Ortrun Mittelsten ;
Prodanov, Dimiter ;
Tatout, Christophe ;
Baroux, Celia .
NUCLEUS, 2019, 10 (01) :181-212
[9]  
Fiaschi L, 2012, INT C PATT RECOG, P2685
[10]   Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections [J].
Galarraga, Miguel ;
Campion, Javier ;
Munoz-Barrutia, Arrate ;
Boque, Noemi ;
Moreno, Haritz ;
Alfredo Martinez, Jose ;
Milagro, Fermin ;
Ortiz-de-Solorzano, Carlos .
JOURNAL OF LIPID RESEARCH, 2012, 53 (12) :2791-2796