Compartmental ordinary differential equation (ODE) models are used extensively in mathematical biology. When transit between compartments occurs at a constant rate, the well-known linear chain trick can be used to show that the ODE model is equivalent to an Erlang distributed delay differential equation (DDE). Here, we demonstrate that compartmental models with nonlinear transit rates and possibly delayed arguments are also equivalent to a scalar distributed DDE. To illustrate the utility of these equivalences, we calculate the equilibria of the scalar DDE, and compute the characteristic function-without calculating a determinant. We derive the equivalent scalar DDE for two examples of models in mathematical biology and use the DDE formulation to identify physiological processes that were otherwise hidden by the compartmental structure of the ODE model.
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preteo, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preteo, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil
Hernandez, Eduardo
Azevedo, Katia A. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preteo, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preteo, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil
Azevedo, Katia A. G.
Rolnik, Vanessa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preteo, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preteo, Dept Computacao & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil