Nonlinear quantum error correction

被引:0
作者
Reichert, Maximilian [1 ,2 ,3 ,4 ,5 ]
Tessler, Louis W. [4 ,6 ]
Bergmann, Marcel [7 ]
van Loock, Peter [7 ]
Byrnes, Tim [1 ,4 ,8 ,9 ,10 ,11 ]
机构
[1] East China Normal Univ, Sch Phys & Mat Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[3] Univ Basque Country UPV EHU, EHU Quantum Ctr, Bilbao 48080, Spain
[4] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
[5] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
[6] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia
[7] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[8] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[9] New York Univ Abu Dhabi, NYUAD Res Inst, Ctr Quantum & Topol Syst CQTS, Abu Dhabi, U Arab Emirates
[10] Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
[11] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
基金
中国国家自然科学基金;
关键词
DECOHERENCE; INFORMATION; CODES;
D O I
10.1103/PhysRevA.105.062438
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a theory of quantum error correction (QEC) for a subclass of states. In the standard theory of QEC, the set of all encoded states is formed by an arbitrary linear combination of the codewords. However, this can be more general than required for a given quantum protocol which may only traverse a subclass of states within the Hilbert space. Here we propose the concept of nonlinear QEC (NLQEC), where the encoded states are not necessarily a linear combination of codewords. We introduce a sufficiency criterion for NLQEC with respect to the subclass of states. The new criterion gives a more relaxed condition for the formation of a QEC code, such that under the assumption that the states are within the subclass of states, the errors are correctable. This allows us, for instance, to effectively circumvent the no-go theorems regarding optical QEC for Gaussian states and channels, for which we present explicit examples.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps
    Abdelrahman, Ahmed
    Mukai, Tetsuya
    Haeffner, Hartmut
    Byrnes, Tim
    [J]. OPTICS EXPRESS, 2014, 22 (03): : 3501 - 3513
  • [2] Quantum error correction beyond qubits
    Aoki, Takao
    Takahashi, Go
    Kajiya, Tadashi
    Yoshikawa, Jun-ichi
    Braunstein, Samuel L.
    van Loock, Peter
    Furusawa, Akira
    [J]. NATURE PHYSICS, 2009, 5 (08) : 541 - 546
  • [3] Quantum error correction against photon loss using multicomponent cat states
    Bergmann, Marcel
    van Loock, Peter
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)
  • [4] Quantum information with continuous variables
    Braunstein, SL
    van Loock, P
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 513 - 577
  • [5] Error correction for continuous quantum variables
    Braunstein, SL
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4084 - 4087
  • [6] Quantum error correction for communication with linear optics
    Braunstein, SL
    [J]. NATURE, 1998, 394 (6688) : 47 - 49
  • [7] Quantum memories at finite temperature
    Brown, Benjamin J.
    Loss, Daniel
    Pachos, Jiannis K.
    Self, Chris N.
    Wootton, James R.
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
  • [8] Macroscopic quantum information processing using spin coherent states
    Byrnes, Tim
    Rosseau, Daniel
    Khosla, Megha
    Pyrkov, Alexey
    Thomasen, Andreas
    Mukai, Tetsuya
    Koyama, Shinsuke
    Abdelrahman, Ahmed
    Ilo-Okeke, Ebubechukwu
    [J]. OPTICS COMMUNICATIONS, 2015, 337 : 102 - 109
  • [9] Macroscopic quantum computation using Bose-Einstein condensates
    Byrnes, Tim
    Wen, Kai
    Yamamoto, Yoshihisa
    [J]. PHYSICAL REVIEW A, 2012, 85 (04):
  • [10] Quantum stabilizer codes embedding qubits into qudits
    Cafaro, Carlo
    Maiolini, Federico
    Mancini, Stefano
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):