Distance sampling with camera traps

被引:183
作者
Howe, Eric J. [1 ]
Buckland, Stephen T. [1 ]
Despres-Einspenner, Marie-Lyne [2 ]
Kuehl, Hjalmar S. [2 ,3 ]
机构
[1] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[2] Max Planck Inst Evolutionary Anthropol, Deutsch Pl 6, D-04103 Leipzig, Germany
[3] German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5e, D-04103 Leipzig, Germany
来源
METHODS IN ECOLOGY AND EVOLUTION | 2017年 / 8卷 / 11期
关键词
animal abundance; camera trapping; density; distance sampling; Maxwell's duiker; LINE TRANSECT TECHNIQUES; UDZUNGWA MOUNTAINS; ACTIVITY PATTERNS; DENSITY; DUNG; POPULATIONS; ABUNDANCE; UNGULATE; RANGE; NEED;
D O I
10.1111/2041-210X.12790
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. Reliable estimates of animal density and abundance are essential for effective wildlife conservation and management. Camera trapping has proven efficient for sampling multiple species, but statistical estimators of density from camera trapping data for species that cannot be individually identified are still in development. 2. We extend point-transect methods for estimating animal density to accommodate data from camera traps, allowing researchers to exploit existing distance sampling theory and software for designing studies and analysing data. We tested it by simulation, and used it to estimate densities of Maxwell's duikers (Philantomba maxwellii) in Tai National Park, Cote d'Ivoire. 3. Densities estimated from simulated data were unbiased when we assumed animals were not available for detection during long periods of rest. Estimated duiker densities were higher than recent estimates from line transect surveys, which are believed to underestimate densities of forest ungulates. 4. We expect these methods to provide an effective means to estimate animal density from camera trapping data and to be applicable in a variety of settings.
引用
收藏
页码:1558 / 1565
页数:8
相关论文
共 48 条
[1]  
[Anonymous], 2004, ADV DISTANCE SAMPLIN
[2]   Pine marten density in lowland riparian woods: A test of the Random Encounter Model based on genetic data [J].
Balestrieri, Alessandro ;
Ruiz-Gonzalez, Aritz ;
Vergara, Maria ;
Capelli, Enrica ;
Tirozzi, Pietro ;
Alfino, Sara ;
Minuti, Gianmarco ;
Prigioni, Claudio ;
Saino, Nicola .
MAMMALIAN BIOLOGY, 2016, 81 (05) :439-446
[3]   Genetic testing of dung identification for antelope surveys in the Udzungwa Mountains, Tanzania [J].
Bowkett, Andrew E. ;
Plowman, Amy B. ;
Stevens, Jamie R. ;
Davenport, Tim R. B. ;
van Vuuren, Bettine Jansen .
CONSERVATION GENETICS, 2009, 10 (01) :251-255
[4]  
Buckland S.T., 2001, pi
[5]  
Buckland ST, 2015, METH STAT ECOL, P1, DOI 10.1007/978-3-319-19219-2
[6]   MONTE-CARLO CONFIDENCE-INTERVALS [J].
BUCKLAND, ST .
BIOMETRICS, 1984, 40 (03) :811-817
[7]   Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes [J].
Burton, A. Cole ;
Neilson, Eric ;
Moreira, Dario ;
Ladle, Andrew ;
Steenweg, Robin ;
Fisher, Jason T. ;
Bayne, Erin ;
Boutin, Stan .
JOURNAL OF APPLIED ECOLOGY, 2015, 52 (03) :675-685
[8]   An invasive-native mammalian species replacement process captured by camera trap survey random encounter models [J].
Caravaggi, Anthony ;
Zaccaroni, Marco ;
Riga, Francesco ;
Schai-Braun, Stephanie C. ;
Dick, Jaimie T. A. ;
Montgomery, W. Ian ;
Reid, Neil .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2016, 2 (01) :45-58
[9]   SPATIALLY EXPLICIT MODELS FOR INFERENCE ABOUT DENSITY IN UNMARKED OR PARTIALLY MARKED POPULATIONS [J].
Chandler, Richard B. ;
Royle, J. Andrew .
ANNALS OF APPLIED STATISTICS, 2013, 7 (02) :936-954
[10]   Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest [J].
Cruz, Paula ;
Paviolo, Agustin ;
Bo, Roberto F. ;
Thompson, Jeffrey J. ;
Di Bitetti, Mario S. .
MAMMALIAN BIOLOGY, 2014, 79 (06) :376-383