Small UAS Online Audio DOA Estimation and Real-Time Identification Using Machine Learning

被引:2
|
作者
Kyritsis, Alexandros [1 ]
Makri, Rodoula [2 ]
Uzunoglu, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens NTUA, Sch Elect & Comp Engn, Microwaves & Fiber Opt Lab, Athens 10682, Greece
[2] Natl Tech Univ Athens NTUA, Inst Commun & Comp Syst ICCS, Athens 10682, Greece
基金
欧盟地平线“2020”;
关键词
UAS; microphone array; DOA estimation; identification; machine learning; PASSIVE ACOUSTIC TECHNIQUE; NARROW-BAND; TECHNOLOGIES; TRACKING; SYSTEM;
D O I
10.3390/s22228659
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The wide range of unmanned aerial system (UAS) applications has led to a substantial increase in their numbers, giving rise to a whole new area of systems aiming at detecting and/or mitigating their potentially unauthorized activities. The majority of these proposed solutions for countering the aforementioned actions (C-UAS) include radar/RF/EO/IR/acoustic sensors, usually working in coordination. This work introduces a small UAS (sUAS) acoustic detection system based on an array of microphones, easily deployable and with moderate cost. It continuously collects audio data and enables (a) the direction of arrival (DOA) estimation of the most prominent incoming acoustic signal by implementing a straightforward algorithmic process similar to triangulation and (b) identification, i.e., confirmation that the incoming acoustic signal actually emanates from a UAS, by exploiting sound spectrograms using machine-learning (ML) techniques. Extensive outdoor experimental sessions have validated this system's efficacy for reliable UAS detection at distances exceeding 70 m.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Real-time Fault Detection on Small Fixed-Wing UAVs using Machine Learning
    Bronz, Murat
    Baskaya, Elgiz
    Delahaye, Daniel
    Puechmorel, Stephane
    2020 AIAA/IEEE 39TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) PROCEEDINGS, 2020,
  • [22] A Scalable Machine Learning Online Service for Big Data Real-Time Analysis
    Baldominos, Alejandro
    Albacete, Esperanza
    Saez, Yago
    Isasi, Pedro
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIG DATA (CIBD), 2014, : 112 - 119
  • [23] Real-Time Gaze Estimation with Online Calibration
    Sun, Li
    Song, Mingli
    Liu, Zicheng
    Sun, Ming-Ting
    IEEE MULTIMEDIA, 2014, 21 (04) : 28 - 37
  • [24] Incremental Online Machine Learning for Detecting Malicious Nodes in Vehicular Communications Using Real-Time Monitoring
    Ajjaj, Souad
    El Houssaini, Souad
    Hain, Mustapha
    El Houssaini, Mohammed-Alamine
    TELECOM, 2023, 4 (03): : 629 - 648
  • [25] Real-Time Lithology Prediction at the Bit Using Machine Learning
    Burak, Tunc
    Sharma, Ashutosh
    Hoel, Espen
    Kristiansen, Tron Golder
    Welmer, Morten
    Nygaard, Runar
    GEOSCIENCES, 2024, 14 (10)
  • [26] Real-time particle pollution sensing using machine learning
    Grant-Jacob, James A.
    Mackay, Benita S.
    Baker, James A. G.
    Heath, Daniel J.
    Xie, Yunhui
    Loxham, Matthew
    Eason, Robert W.
    Mills, Ben
    OPTICS EXPRESS, 2018, 26 (21): : 27237 - 27246
  • [27] Real-time Tweets Analysis using Machine Learning and Bigdata
    Reddy, P Nandieswar
    Sai Aswath, S.
    Alapati, Rithvika
    Radha, D.
    Proceedings of NKCon 2024 - 3rd Edition of IEEE NKSS's Flagship International Conference: Digital Transformation: Unleashing the Power of Information, 2024,
  • [28] Real-Time Collaborative Filtering Using Extreme Learning Machine
    Deng, Wanyu
    Zheng, Qinghua
    Chen, Lin
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 1, 2009, : 466 - +
  • [29] Real-Time Slip Detection and Control Using Machine Learning
    Pereira Tavares, Alexandre Henrique
    Oliveira, S. R. J.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1363 - 1369
  • [30] Real-time combustion progress estimation using deep learning
    Pushpalayam, Navaneeth
    Nguyen, Cuong M.
    Sun, Zongxuan
    Rothamer, David A.
    Kim, Kenneth
    Kweon, Chol-Bum
    Rajamani, Rajesh
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 230