Small UAS Online Audio DOA Estimation and Real-Time Identification Using Machine Learning

被引:2
|
作者
Kyritsis, Alexandros [1 ]
Makri, Rodoula [2 ]
Uzunoglu, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens NTUA, Sch Elect & Comp Engn, Microwaves & Fiber Opt Lab, Athens 10682, Greece
[2] Natl Tech Univ Athens NTUA, Inst Commun & Comp Syst ICCS, Athens 10682, Greece
基金
欧盟地平线“2020”;
关键词
UAS; microphone array; DOA estimation; identification; machine learning; PASSIVE ACOUSTIC TECHNIQUE; NARROW-BAND; TECHNOLOGIES; TRACKING; SYSTEM;
D O I
10.3390/s22228659
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The wide range of unmanned aerial system (UAS) applications has led to a substantial increase in their numbers, giving rise to a whole new area of systems aiming at detecting and/or mitigating their potentially unauthorized activities. The majority of these proposed solutions for countering the aforementioned actions (C-UAS) include radar/RF/EO/IR/acoustic sensors, usually working in coordination. This work introduces a small UAS (sUAS) acoustic detection system based on an array of microphones, easily deployable and with moderate cost. It continuously collects audio data and enables (a) the direction of arrival (DOA) estimation of the most prominent incoming acoustic signal by implementing a straightforward algorithmic process similar to triangulation and (b) identification, i.e., confirmation that the incoming acoustic signal actually emanates from a UAS, by exploiting sound spectrograms using machine-learning (ML) techniques. Extensive outdoor experimental sessions have validated this system's efficacy for reliable UAS detection at distances exceeding 70 m.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Real-Time Identification of Medicinal Plants using Machine Learning Techniques
    Sivaranjani, C.
    Kalinathan, Lekshmi
    Amutha, R.
    Kathavarayan, Ruba Soundar
    Kumar, Jegadish K. J.
    2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019), 2019,
  • [2] Real-Time Parameter Identification for Forging Machine Using Reinforcement Learning
    Zhang, Dapeng
    Du, Lifeng
    Gao, Zhiwei
    PROCESSES, 2021, 9 (10)
  • [3] A Real-Time Network Traffic Classifier for Online Applications Using Machine Learning
    Ahmed, Ahmed Abdelmoamen
    Agunsoye, Gbenga
    ALGORITHMS, 2021, 14 (08)
  • [4] Real-time DoA Estimation for Automotive Radar
    Wu, Yubo
    Li, Chengzhang
    Hou, Y. Thomas
    Lou, Wenjing
    2021 18TH EUROPEAN RADAR CONFERENCE (EURAD), 2021, : 437 - 440
  • [5] Real-Time Application Identification Method for Mobile Networks Using Machine Learning
    Ou, Tatsuhiro
    Nakao, Akihiro
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [6] Real-Time Healthcare Monitoring System using Online Machine Learning and Spark Streaming
    Hassan, Fawzya
    Shaheen, Masoud E.
    Sahal, Radhya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 650 - 658
  • [7] A machine learning approach for real-time cortical state estimation
    Weiss, David A.
    Borsa, Adriano M. F.
    Pala, Aurelie
    Sederberg, Audrey J.
    Stanley, Garrett B.
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (01)
  • [8] Real-time Critical Machine Identification for Online Transient Stability Analysis
    Su, Fu
    Zhang, Baohui
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (IEEE EEEIC 2015), 2015, : 1842 - 1845
  • [9] ATTEMPT OF A REAL-TIME DRILLING STATE IDENTIFICATION WITH MACHINE LEARNING
    Inoue, Tomoya
    Ishiwata, Junya
    Wada, Ryota
    Tahara, Junichiro
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 11, 2020,
  • [10] Real-time wind estimation from the internal sensors of an aircraft using machine learning
    Motamedi, Ali
    Sabzehparvar, Mehdi
    Mortazavi, Mahdi
    Soft Computing, 2024, 28 (17-18) : 10601 - 10628