Lieb-Robinson Bounds, Arveson Spectrum and Haag-Ruelle Scattering Theory for Gapped Quantum Spin Systems

被引:16
作者
Bachmann, Sven [1 ]
Dybalski, Wojciech [2 ]
Naaijkens, Pieter [3 ]
机构
[1] Univ Munich, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[3] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
来源
ANNALES HENRI POINCARE | 2016年 / 17卷 / 07期
关键词
BRAID GROUP STATISTICS; ASYMPTOTIC COMPLETENESS; GROUND-STATE; PARTICLE SCATTERING; HARMONIC-ANALYSIS; FIELD THEORIES; PHASE; PERTURBATIONS; PROPAGATION; EXPANSIONS;
D O I
10.1007/s00023-015-0440-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider translation invariant gapped quantum spin systems satisfying the Lieb-Robinson bound and containing single-particle states in a ground state representation. Following the Haag-Ruelle approach from relativistic quantum field theory, we construct states describing collisions of several particles, and define the corresponding S-matrix. We also obtain some general restrictions on the shape of the energy-momentum spectrum. For the purpose of our analysis, we adapt the concepts of almost local observables and energy-momentum transfer (or Arveson spectrum) from relativistic QFT to the lattice setting. The Lieb-Robinson bound, which is the crucial substitute of strict locality from relativistic QFT, underlies all our constructions. Our results hold, in particular, in the Ising model in strong transverse magnetic fields.
引用
收藏
页码:1737 / 1791
页数:55
相关论文
共 77 条
[51]  
Malyshev V.A., 1976, LECT NOTES MATH, V653, P173
[52]  
Malyshev V.A., 1983, LEKTSII DLYA MOLODYK
[53]   UNIQUENESS OF THE TRANSLATIONALLY-INVARIANT GROUND-STATE IN QUANTUM SPIN SYSTEMS [J].
MATSUI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 126 (03) :453-467
[54]   Stability of Frustration-Free Hamiltonians [J].
Michalakis, Spyridon ;
Zwolak, Justyna P. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) :277-302
[55]  
Mikeska HJ, 2004, LECT NOTES PHYS, V645, P1
[56]   Monoids, embedding functors and quantum groups [J].
Muger, Michael ;
Tuset, Lars .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (01) :93-123
[57]   LOCALIZED ENDOMORPHISMS IN KITAEV'S TORIC CODE ON THE PLANE [J].
Naaijkens, Pieter .
REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (04) :347-373
[58]   Propagation of correlations in quantum lattice systems [J].
Nachtergaele, Bruno ;
Ogata, Yoshiko ;
Sims, Robert .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (01) :1-13
[59]   Lieb-Robinson bounds and the exponential clustering theorem [J].
Nachtergaele, Bruno ;
Sims, Robert .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) :119-130
[60]   Locality Estimates for Quantum Spin Systems [J].
Nachtergaele, Bruno ;
Sims, Robert .
NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, :591-+