On group inverse of singular Toeplitz matrices

被引:35
作者
Wei, YM [1 ]
Diao, H
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
关键词
group inverse; index; Toeplitz matrix;
D O I
10.1016/j.laa.2004.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that the group inverse of a real singular Toeplitz matrix can be represented as the sum of products of lower and upper triangular Toeplitz matrices. Such a matrix representation generalizes "Gohberg-Semencul formula" in the literature. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
[21]   Pascal matrices and Toeplitz matrices: Relations [J].
Tomeo, Venancio ;
Torrano, Emilio .
COMPUTATIONAL AND MATHEMATICAL METHODS, 2020, 2 (06)
[22]   PRECONDITIONERS FOR SYMMETRIZED TOEPLITZ AND MULTILEVEL TOEPLITZ MATRICES [J].
Pestana, J. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (03) :870-887
[23]   Normal Toeplitz matrices [J].
Farenick, DR ;
Krupnik, M ;
Krupnik, N ;
Lee, WY .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :1037-1043
[24]   On the eigenvectors of Toeplitz matrices [J].
Ikramov K.D. .
Moscow University Computational Mathematics and Cybernetics, 2015, 39 (2) :72-75
[25]   A representation for the Drazin inverse of block matrices with a singular generalized Schur complement [J].
Li, Xiezhang .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) :7531-7536
[26]   A NOTE ON BLOCK REPRESENTATIONS OF THE GROUP INVERSE OF LAPLACIAN MATRICES [J].
Bu, Changjiang ;
Sun, Lizhu ;
Zhou, Jiang ;
Wei, Yimin .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 :866-876
[27]   The group inverse of circulant matrices depending on four parameters [J].
Carmona, A. ;
Encinas, A. M. ;
Jimenez, M. J. ;
Mitjana, M. .
SPECIAL MATRICES, 2022, 10 (01) :87-108
[28]   GROUP INVERSE OF MODIFIED MATRICES OVER AN ARBITRARY RING [J].
Castro-Gonzalez, N. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 :201-214
[29]   NONCIRCULANT TOEPLITZ MATRICES ALL OF WHOSE POWERS ARE TOEPLITZ [J].
Griffin, Kent ;
Stuart, Jeffrey L. ;
Tsatsomeros, Michael J. .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) :1185-1193
[30]   Toeplitz matrices are unitarily similar to symmetric matrices [J].
Chien, Mao-Ting ;
Liu, Jianzhen ;
Nakazato, Hiroshi ;
Tam, Tin-Yau .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10) :2131-2144