Invariant submanifolds for systems of vector fields of constant rank

被引:1
|
作者
Ahn HeungJu [1 ]
Han ChongKyu [2 ]
机构
[1] Daegu Gyeongbuk Inst Sceince & Technol, Sch Undergrad Study, Daegu 42988, South Korea
[2] Seoul Natl Univ, Dept Math, Coll Nat Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
control system; vector fields; reachability; orbits; invariant submanifolds; PFAFFIAN SYSTEMS; INTEGRABILITY; THEOREM; PDE;
D O I
10.1007/s11425-016-5139-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a system of vector fields on a smooth manifold that spans a plane field of constant rank, we present a systematic method and an algorithm to find submanifolds that are invariant under the flows of the vector fields. We present examples of partition into invariant submanifolds, which further gives partition into orbits. We use the method of generalized Frobenius theorem by means of exterior differential systems.
引用
收藏
页码:1417 / 1426
页数:10
相关论文
共 50 条
  • [21] On Invariant Submanifolds of a Nearly Trans-Sasakian Manifold
    A. Turgut Vanli
    R. Sari
    Arabian Journal for Science and Engineering, 2011, 36 : 423 - 429
  • [22] On Invariant Submanifolds of a Nearly Trans-Sasakian Manifold
    Vanli, A. Turgut
    Sari, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (03): : 423 - 429
  • [23] Orbits and global unique continuation for systems of vector fields
    S. Berhanu
    G. A. Mendoza
    The Journal of Geometric Analysis, 1997, 7 (2) : 173 - 194
  • [24] Systems of Vector Fields for the Integration of Ordinary Differential Equations
    Ruiz, A.
    Muriel, C.
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 2021, 9 : 83 - 102
  • [25] Certain invariant submanifolds of generalized Sasakian-space-forms
    Sarkar, Avijit
    Biswas, Nirmal
    AFRIKA MATEMATIKA, 2022, 33 (03)
  • [26] Neural learning of vector fields for encoding stable dynamical systems
    Lemme, A.
    Neumann, K.
    Reinhart, R. F.
    Steil, J. J.
    NEUROCOMPUTING, 2014, 141 : 3 - 14
  • [27] Existence of trace for solutions of locally integrable systems of vector fields
    Hounie, J.
    da Silva, E. R.
    GEOMETRIC ANALYSIS OF SEVERAL COMPLEX VARIABLES AND RELATED TOPICS, 2011, 550 : 57 - 73
  • [28] Sliding Vector Fields via Slow-Fast Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (05) : 851 - 869
  • [29] Commuting planar polynomial vector fields for conservative Newton systems
    Nagloo, Joel
    Ovchinnikov, Alexey
    Thompson, Peter
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [30] Certain invariant submanifolds of generalized Sasakian-space-forms
    Avijit Sarkar
    Nirmal Biswas
    Afrika Matematika, 2022, 33