Invariant submanifolds for systems of vector fields of constant rank

被引:1
|
作者
Ahn HeungJu [1 ]
Han ChongKyu [2 ]
机构
[1] Daegu Gyeongbuk Inst Sceince & Technol, Sch Undergrad Study, Daegu 42988, South Korea
[2] Seoul Natl Univ, Dept Math, Coll Nat Sci, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
control system; vector fields; reachability; orbits; invariant submanifolds; PFAFFIAN SYSTEMS; INTEGRABILITY; THEOREM; PDE;
D O I
10.1007/s11425-016-5139-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a system of vector fields on a smooth manifold that spans a plane field of constant rank, we present a systematic method and an algorithm to find submanifolds that are invariant under the flows of the vector fields. We present examples of partition into invariant submanifolds, which further gives partition into orbits. We use the method of generalized Frobenius theorem by means of exterior differential systems.
引用
收藏
页码:1417 / 1426
页数:10
相关论文
共 50 条
  • [1] Invariant submanifolds for systems of vector fields of constant rank
    AHN Heung Ju
    HAN Chong Kyu
    ScienceChina(Mathematics), 2016, 59 (07) : 1417 - 1426
  • [2] Invariant submanifolds for systems of vector fields of constant rank
    HeungJu Ahn
    ChongKyu Han
    Science China Mathematics, 2016, 59 : 1417 - 1426
  • [3] Invariant submanifolds for affine control systems
    Han, Chong-Kyu
    Kim, Hyeseon
    ANNALES POLONICI MATHEMATICI, 2020, 124 (01) : 61 - 73
  • [4] Attracting and Natural Invariant Varieties for Polynomial Vector Fields and Control Systems
    Kruff, Niclas
    Schilli, Christian
    Walcher, Sebastian
    Zerz, Eva
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [6] GENERIC SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS WITH CERTAIN VECTOR FIELDS
    Sarkar, Avijit
    Ghosh, Sujoy
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 425 - 434
  • [7] On the solution of systems of equations with constant rank derivatives
    Argyros, Ioannis K.
    Hilout, Said
    NUMERICAL ALGORITHMS, 2011, 57 (02) : 235 - 253
  • [8] FINITE DIMENSIONAL INVARIANT KAM TORT FOR TAME VECTOR FIELDS
    Corsi, Livia
    Feola, Roberto
    Procesi, Michela
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 1913 - 1983
  • [9] Centers and Limit Cycles of Vector Fields Defined on Invariant Spheres
    Claudio A. Buzzi
    Ana Livia Rodero
    Joan Torregrosa
    Journal of Nonlinear Science, 2021, 31
  • [10] Centers and Limit Cycles of Vector Fields Defined on Invariant Spheres
    Buzzi, Claudio A.
    Rodero, Ana Livia
    Torregrosa, Joan
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)