共 50 条
Visible-light-induced photo-Fenton process for the facile degradation of metronidazole by Fe/Si codoped TiO2
被引:29
|作者:
Du, Wei
[1
]
Xu, Qin
[1
]
Jin, Dangqin
[3
]
Wang, Xiaoyu
[1
]
Shu, Yun
[1
]
Kong, Liming
[1
]
Hu, Xiaoya
[1
,2
]
机构:
[1] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China
[2] Yangzhou Univ, Guangling Coll, Yangzhou 225002, Jiangsu, Peoples R China
[3] Yangzhou Polytechn Inst, Dept Chem Engn, Yangzhou 225127, Jiangsu, Peoples R China
来源:
RSC ADVANCES
|
2018年
/
8卷
/
70期
关键词:
PHOTOCATALYTIC DEGRADATION;
DOPED TIO2;
DIAMOND NANOPARTICLES;
AQUEOUS-SOLUTION;
MESOPOROUS TIO2;
WATER;
EFFICIENT;
CATALYST;
POLLUTANTS;
OXIDE;
D O I:
10.1039/c8ra08114j
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
This work investigated the feasibility and efficiency of a heterogeneous photo-Fenton catalyst, Fe/Si codoped TiO2, for the degradation of metronidazole (MNZ) under visible light irradiation. The Fe/Si codoped TiO2 was prepared via a facile and simple sol-gel solvothermal process followed by annealing at 480 degrees C for 4 hours. High resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) measurements revealed that the photo-Fenton process did not change the structure, textural and surface morphologies of this catalyst. Elemental mapping results indicated the good dispersion of Fe and Si ions in TiO2. Nitrogen adsorption and desorption measurements indicated that Si doping increased the surface area of the catalysts. The Fe and Si doping narrowed the band gap of TiO2. They also facilitated the transfer of photo-generated electrons from TiO2 to Fe(iii). Under visible light irradiation and the optimum operating conditions, MNZ could be completely degraded in 50 min by this catalyst within a wide pH range. Hydroxyl radicals and holes were verified to be responsible for degrading MNZ. The leaching of iron ions was less than 0.047 ppm even after illuminating the catalyst for 6 hours, indicating the good stability of the Fe/Si codoped TiO2. The as-prepared catalysts with excellent catalytic activity, and remarkable reusability and stability could provide a new insight into the preparation of photocatalysts and have wide applications for antibiotics removal.
引用
收藏
页码:40022 / 40034
页数:13
相关论文