Carbon-coated nitrogen doped SiOx anode material for high stability lithium ion batteries

被引:22
|
作者
Jin, Chenxin [1 ]
Dan, Jianglei [1 ]
Zou, Yue [1 ]
Xu, Guojun [1 ]
Yue, Zhihao [1 ]
Li, Xiaomin [1 ]
Sun, Fugen [1 ]
Zhou, Lang [1 ]
Wang, Li [2 ]
机构
[1] Nanchang Univ, Inst Photovolta, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Mat Sci & Engn, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Nitrogen-doping; Electrical conductivity; Electrical-chemical properties; Lithium ion batteries; NEGATIVE ELECTRODE; COMPOSITE; CAPACITY; GRAPHENE;
D O I
10.1016/j.ceramint.2021.07.112
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to the inherent volume expansion effect and low conductivity of silicon monoxide (SiOx, 0 < x < 2), its cycling performance is seriously decreased at high rates. To solve this, SiOx was first doped with ammonium sulfate, then it was carbon coated with glucose. Finally, carbon-coated nitrogen doped SiOx (N doped SiOx@C) was successfully obtained. This strategy can enhance the electronic conductivity, ionic conductivity and solve the serious volume expansion problem of silicon-based anode materials to a great extent. This synergistic effect brings up greatly improvement on its electrochemical performance, N doped SiOx@C anode exhibits a high specific capacity retention rate of 91.4% after 100 cycles at a high rate of 1.05 A g(-1). The method adopted is characterized by its flexibility, simplicity and efficiency.
引用
收藏
页码:29443 / 29450
页数:8
相关论文
共 50 条
  • [1] Lithium ion batteries with enhanced electrochemical performance by using carbon-coated SiOx/Ag composites as anode material
    Ouyang, Puhua
    Jin, Chenxin
    Xu, Guojun
    Yang, Xixi
    Kong, Kaijie
    Liu, Bobo
    Dan, Jianglei
    Chen, Jun
    Yue, Zhihao
    Li, Xiaomin
    Sun, Fugen
    Sun, Xilian
    Zhou, Lang
    CERAMICS INTERNATIONAL, 2021, 47 (01) : 1086 - 1094
  • [2] Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries
    Jeong, Min-Gi
    Islam, Mobinul
    Du, Hoang Long
    Lee, Yoon-Sung
    Sun, Ho-Hyun
    Choi, Wonchang
    Lee, Joong Kee
    Chung, Kyung Yoon
    Jung, Hun-Gi
    ELECTROCHIMICA ACTA, 2016, 209 : 299 - 307
  • [3] High performance carbon-coated lithium zinc titanate as an anode material for lithium-ion batteries
    Wang, Lijuan
    Chen, Baokuan
    Meng, Zhaohui
    Luo, Baomin
    Wang, Xiaojie
    Zhao, Yingying
    ELECTROCHIMICA ACTA, 2016, 188 : 135 - 144
  • [4] Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries
    Shen, Lanyao
    Wang, Zhaoxiang
    Chen, Liquan
    RSC ADVANCES, 2014, 4 (29) : 15314 - 15318
  • [5] Carbon-Coated FeS as an Anode for Lithium Ion Batteries
    Dong, Chenchu
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (15) : 8275 - 8277
  • [6] Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations
    Dimov, N
    Kugino, S
    Yoshio, M
    ELECTROCHIMICA ACTA, 2003, 48 (11) : 1579 - 1587
  • [7] Effects of calcination on the preparation of carbon-coated SnO2/graphene as anode material for lithium-ion batteries
    Wu, Guiliang
    Li, Zhongtao
    Wu, Wenting
    Wu, Mingbo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 : 582 - 587
  • [8] Mg-doped, carbon-coated, and prelithiated SiOx as anode materials with improved initial Coulombic efficiency for lithium-ion batteries
    Liu, Bin
    Liu, Jie
    Zhong, Cheng
    Hu, Wenbin
    CARBON ENERGY, 2024, 6 (03)
  • [9] Nitrogen doped porous carbon coated antimony as high performance anode material for sodium-ion batteries
    Luo, Xinyuan
    Tan, Hengfeng
    Ma, Ting
    Wang, Hui
    Lv, Miao
    Yu, Zhou
    Fu, Caiping
    Chang, Xinghua
    Jin, Shengming
    NANOTECHNOLOGY, 2021, 32 (31)
  • [10] Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries
    Wu, Xuan
    Yang, Xuelin
    Zhang, Fei
    Cai, Liangting
    Zhang, Lulu
    Wen, Zhaoyin
    CERAMICS INTERNATIONAL, 2017, 43 (12) : 9458 - 9464