Effective Keyword Search in Weighted Graphs (Extended Abstract)

被引:0
作者
Kargar, Mehdi [1 ]
Golab, Lukasz [2 ]
Srivastava, Divesh [3 ]
Szlichta, Jaroslaw [4 ]
Zihayat, Morteza [1 ]
机构
[1] Ryerson Univ, Ted Rogers Sch Management, Toronto, ON, Canada
[2] Univ Waterloo, Waterloo, ON, Canada
[3] AT&T Chief Data Off, Atlanta, GA USA
[4] Ontario Tech Univ, Oshawa, ON, Canada
来源
2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021) | 2021年
关键词
D O I
10.1109/ICDE51399.2021.00261
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real graphs contain edge and node weights, representing penalty, distance or cost. We study the problem of keyword search in weighted node-labeled graphs, in which a query consists of a set of keywords and an answer is a subgraph. We consider three ranking strategies for answer subgraphs: edge weights, node weights, and a bi-objective combination of both node and edge weights. We propose and experimentally evaluate algorithms that optimize these objectives with an approximation ratio of two.
引用
收藏
页码:2350 / 2351
页数:2
相关论文
共 5 条
  • [1] [Anonymous], 2009, P VLDB ENDOW, DOI DOI 10.14778/1687627.1687699
  • [2] He H., 2007, Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data (SIGMOD), P305
  • [3] Keyword Search in Graphs: Finding r-cliques
    Kargar, Mehdi
    An, Aijun
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2011, 4 (10): : 681 - 692
  • [4] Kargar Mehdi, 2020, IEEE T KNOWLEDGE DAT
  • [5] Qin L, 2009, PROC INT CONF DATA, P724, DOI 10.1109/ICDE.2009.67