Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries

被引:135
作者
Rashad, Muhammad [1 ]
Asif, Muhammad [2 ]
Wang, Yuxin [1 ]
He, Zhen [1 ]
Ahmed, Iftikhar [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage systems; Magnesium-ion batteries; Electrolytes; Magnesium-lithium hybrid ion batteries; Magnesium-sodium hybrid ion batteries; Aqueous rechargeable magnesium-sodium hybrid ion batteries; Aqueous rechargeable magnesium-zinc hybrid ion batteries; Cathode materials; Electrolyte additives; Electrochemical properties; LONG-CYCLE-LIFE; LITHIUM INTERCALATION BEHAVIOR; RECHARGEABLE MG BATTERIES; HIGH-VOLTAGE CATHODE; PRUSSIAN BLUE; COPPER HEXACYANOFERRATE; ENERGY-STORAGE; ELECTROCHEMICAL PERFORMANCE; NICKEL HEXACYANOFERRATE; LI3V2(PO4)(3) CATHODE;
D O I
10.1016/j.ensm.2019.10.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rechargeable magnesium ion batteries (MIBs) are ideal candidates to replace currently commercialized high energy density lithium ion batteries (LIBs) owing to their cost effective and environmentally friendly nature. However, bad performance of MIBs is a big challenge for researchers. In this review, we have critically discussed the state-of-the-art research activities made for the development of Mg-ion battery electrolytes and cathode materials with fast magnesiation kinetics. Emphasizing the chemical structures of both organic and inorganic electrolytes and their compatibilities with different cathode materials, the kinetic properties of electrochemical reactions for achieving optimized energy and power densities, are critically reviewed. To tackle the large polarizations of MIBs, the latest and emerging hybrid ion electrochemistries such as Mg-Li, Mg-Na, aqueous rechargeable Mg-Na, and Mg-Zn hybrid ion batteries, are highlighted to elaborate the merits and challenges of each electrolyte and nanostructured cathodes. The cathode materials covered in this review include various kinds of inorganic materials (i.e. metal oxides, metal sulfides), organic polymers, Prussian blue analogous and NASICON-type Li/Na cathodes with high working potentials. At the end, this review discuss comprehensive future research strategies for exploring new cathodes with high working voltages for MIBs.
引用
收藏
页码:342 / 375
页数:34
相关论文
共 205 条
[1]   Preparation and properties of resorcinol-formaldehyde organic and carbon gels [J].
Al-Muhtaseb, SA ;
Ritter, JA .
ADVANCED MATERIALS, 2003, 15 (02) :101-+
[2]   Organic semiconductors for solution-processable field-effect transistors (OFETs) [J].
Allard, Sybille ;
Forster, Michael ;
Souharce, Benjamin ;
Thiem, Heiko ;
Scherf, Ullrich .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (22) :4070-4098
[3]   Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes [J].
An, Qinyou ;
Li, Yifei ;
Yoo, Hyun Deog ;
Chen, Shuo ;
Ru, Qiang ;
Mai, Liqiang ;
Yao, Yan .
NANO ENERGY, 2015, 18 :265-272
[4]  
[Anonymous], 2014, ANGEW CHEM
[5]  
[Anonymous], [No title captured]
[6]   Rechargeable aqueous hybrid ion batteries: developments and prospects [J].
Ao, Huaisheng ;
Zhao, Yingyue ;
Zhou, Jie ;
Cai, Wenlong ;
Zhang, Xiaotan ;
Zhu, Yongchun ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) :18708-18734
[7]   Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye-sensitized solar cells [J].
Armel, Vanessa ;
Forsyth, Maria ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) :2234-2239
[8]   Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability [J].
Asakura, Daisuke ;
Li, Carissa H. ;
Mizuno, Yoshifumi ;
Okubo, Masashi ;
Zhou, Haoshen ;
Talham, Daniel R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (07) :2793-2799
[9]   Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries [J].
Asif, Muhammad ;
Rashad, Muhammad ;
Ali, Zeeshan ;
Qiu, Hailong ;
Li, Wei ;
Pan, Lujun ;
Hou, Yanglong .
MATERIALS TODAY ENERGY, 2018, 10 :108-117
[10]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727