On linear stability of predictor-corrector algorithms for fractional differential equations

被引:192
作者
Garrappa, Roberto [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
fractional differential equation; predictor-corrector; product integration rule; stability; VOLTERRA INTEGRAL-EQUATIONS; FAST NUMERICAL-SOLUTION;
D O I
10.1080/00207160802624331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the numerical approximation of differential equations of fractional order by means of predictor-corrector algorithms. A linear stability analysis is performed and the stability regions of different methods are compared. Furthermore the effects on stability of multiple corrector iterations are verified.
引用
收藏
页码:2281 / 2290
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 2006, Journal of the Electrochemical Society
[2]  
[Anonymous], 1999, INTRO DIFFERENCE EQU, DOI DOI 10.1007/978-1-4757-3110-1
[3]   PRODUCT INTEGRATION METHODS FOR 2ND-KIND ABEL INTEGRAL-EQUATIONS [J].
CAMERON, RF ;
MCKEE, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) :1-10
[4]  
DE HOOG F, 1973, MATH COMPUT, V27, P295, DOI 10.1090/S0025-5718-1973-0329207-0
[5]   Efficient solution of multi-term fractional differential equations using P(EC)mE methods [J].
Diethelm, K .
COMPUTING, 2003, 71 (04) :305-319
[6]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[7]   Numerical solution of fractional order differential equations by extrapolation [J].
Diethelm, K ;
Walz, G .
NUMERICAL ALGORITHMS, 1997, 16 (3-4) :231-253
[8]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[9]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[10]  
Diethelm K., 1998, Forschung und wissenschaftliches Rechnen, P57