Perez-Izquierdo and Shestakov recently extended the PBW theorem to Malcev algebras. It follows from their construction that for any Malcev algebra M over a field of characteristic not equal 2, 3 there is a representation of the universal nonassociative enveloping algebra U(M) by linear operators on the polynomial algebra P(M). For the nilpotent non-Lie Malcev algebra M of dimension 5, we use this representation to determine explicit structure constants for U (M); from this it follows that U (M) is not power-associative. We obtain a finite set of generators for the alternator ideal I (M) subset of U(M) and derive structure constants for the universal alternative enveloping algebra A (M) = U(M)/I(M), a new infinite dimensional alternative algebra. We verify that the map M -> A (M) is injective, and so M is special.
机构:
Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
Lomonosov Moscow State Univ, GSP 1, Moscow, Russia
Moscow Ctr Fundamental & Appl Math, GSP 1, Moscow, RussiaBar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
Guterman, Alexander
Kudryavtsev, Dmitry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manchester, Dept Math, Manchester M13 9PL, EnglandBar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Eurasian Natl Univ, Dept Math, Astana 010008, KazakhstanWayne State Univ, Dept Math, Detroit, MI 48202 USA
机构:
Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest, RomaniaRomanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest, Romania
Beltita, Daniel
Nicolae, Mihai
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest, Romania
Petr Gas Univ Ploiesti, Ploiesti 100680, RomaniaRomanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest, Romania