In situ layer-by-layer assembled carbonic anhydrase-coated hollow fiber membrane contactor for rapid CO2 absorption

被引:47
|
作者
Yong, Joel K. J. [1 ]
Stevens, Geoffrey W. [1 ]
Caruso, Frank [1 ,2 ]
Kentish, Sandra E. [1 ]
机构
[1] Univ Melbourne, Dept Chem & Biomol Engn, Parkville, Vic 3010, Australia
[2] Univ Melbourne, ARC Ctr Excellence Convergent Bionano Sci & Techn, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Carbonic anhydrase; Hollow fiber membranes; Membrane contactor; GAS-ABSORPTION; MASS-TRANSFER; POLYPROPYLENE MEMBRANES; DIOXIDE CAPTURE; PERFORMANCE; RESISTANCE; SEPARATION; RETENTION; TRIALS; WATER;
D O I
10.1016/j.memsci.2016.05.020
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The use of potassium carbonate as a solvent for the absorption of carbon dioxide is constrained by slow absorption kinetics, which hinders the overall rate of mass transfer. In this work, the reaction rate is promoted by the electrostatic adsorption of carbonic anhydrase (CA) onto the surface of both a porous polypropylene (PP) and a non-porous polydimethoxysilane (PDMS) hollow fiber membrane via layer-by layer (LbL) assembly. The rate of CO2 absorption into K2CO3 is increased approximately threefold when CA is adsorbed onto the PP membrane surface, while the absorption rate of the modified PDMS membrane was slightly lower, within 70-90% of the PP values. The results show that the ultrathin CA films are assembled mainly on the surface of the membranes and do not penetrate into the depth of the membrane pores. The CO2 hydration is enhanced in all cases, and the wetting of the porous PP membranes is reduced significantly by the pore blockage induced by the LbL adsorption of the polyelectrolytes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:556 / 565
页数:10
相关论文
共 50 条
  • [31] 3D-CFD Modeling of Hollow-Fiber Membrane Contactor for CO2 Absorption Using MEA Solution
    Bozonc, Alexandru-Constantin
    Sandu, Vlad-Cristian
    Cormos, Calin-Cristian
    Cormos, Ana-Maria
    MEMBRANES, 2024, 14 (04)
  • [32] A research on CO2 removal via hollow fiber membrane contactor: The effect of heat treatment
    Ahmadi, H.
    Hashemifard, S. A.
    Ismail, A. F.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 120 : 218 - 230
  • [33] HOLLOW FIBER MEMBRANE CONTACTOR ABSORPTION OF CO2 FROM THE FLUE GAS: REVIEW AND PERSPECTIVE
    Zhang, Z. E.
    Yan, Y. F.
    Zhang, L.
    Ju, S. X.
    GLOBAL NEST JOURNAL, 2014, 16 (02): : 354 - 373
  • [34] Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor
    Mansourizadeh, A.
    Ismail, A. F.
    Matsuura, T.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 353 (1-2) : 192 - 200
  • [35] Dynamic Modeling of CO2 Absorption Process Using Hollow-Fiber Membrane Contactor in MEA Solution
    Bozonc, Alexandru-Constantin
    Cormos, Ana-Maria
    Dragan, Simion
    Dinca, Cristian
    Cormos, Calin-Cristian
    ENERGIES, 2022, 15 (19)
  • [36] CO2 Absorption Using Hollow Fiber Membrane Contactors: Introducing pH Swing Absorption (pHSA) to Overcome Purity Limitation
    Chavan, Sayali Ramdas
    Perre, Patrick
    Pozzobon, Victor
    Lemaire, Julien
    MEMBRANES, 2021, 11 (07)
  • [37] Effects of CO2 bubbles on layer-by-layer assembled hybrid thin film
    Heo, Jiwoong
    Hong, Jinkee
    CHEMICAL ENGINEERING JOURNAL, 2016, 303 : 433 - 438
  • [38] Mass transfer characteristics of a continuously operated hollow-fiber membrane contactor and stripper unit for CO2 capture
    Nieminen, H.
    Jarvinen, L.
    Ruuskanen, V.
    Laari, A.
    Koiranen, T.
    Ahola, J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 98
  • [39] CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor
    Rezakazemi, Mashallah
    Darabi, Mohammad
    Soroush, Ebrahim
    Mesbah, Mohammad
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 210 : 920 - 926
  • [40] Analysis of CO2 separation and simulation of a partially wetted hollow fiber membrane contactor
    Keshavarz, R.
    Fathikalajahi, J.
    Ayatollahi, S.
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 152 (03) : 1237 - 1247