Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models

被引:0
|
作者
Meng, Zaiqiao [1 ,2 ]
Liu, Fangyu [1 ]
Shareghi, Ehsan [1 ,3 ]
Su, Yixuan [1 ]
Collins, Charlotte [1 ]
Collier, Nigel [1 ]
机构
[1] Univ Cambridge, Language Technol Lab, Cambridge, England
[2] Univ Glasgow, Dept Comp Sci, Glasgow, Lanark, Scotland
[3] Monash Univ, Dept Data Sci & AI, Clayton, Vic, Australia
来源
PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS) | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge probing is crucial for understanding the knowledge transfer mechanism behind the pre-trained language models (PLMs). Despite the growing progress of probing knowledge for PLMs in the general domain, specialised areas such as biomedical domain are vastly under-explored. To facilitate this, we release a well-curated biomedical knowledge probing benchmark, MedLAMA, constructed based on the Unified Medical Language System (UMLS) Metathesaurus. We test a wide spectrum of state-of-the-art PLMs and probing approaches on our benchmark, reaching at most 3% of acc@10. While highlighting various sources of domain-specific challenges that amount to this underwhelming performance, we illustrate that the underlying PLMs have a higher potential for probing tasks. To achieve this, we propose CONTRASTIVE-P robe, a novel self-supervised contrastive probing approach, that adjusts the underlying PLMs without using any probing data. While CONTRASTIVE-P robe pushes the acc@10 to 24%, the performance gap remains notable. Our human expert evaluation suggests that the probing performance of our CONTRASTIVE-P robe is underestimated as UMLS does not comprehensively cover all existing factual knowledge. We hope MedLAMA and CONTRASTIVE-P robe facilitate further developments of more suited probing techniques for this domain.(1)
引用
收藏
页码:4798 / 4810
页数:13
相关论文
共 50 条
  • [1] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [2] Probing Simile Knowledge from Pre-trained Language Models
    Chen, Weijie
    Chang, Yongzhu
    Zhang, Rongsheng
    Pu, Jiashu
    Chen, Guandan
    Zhang, Le
    Xi, Yadong
    Chen, Yijiang
    Su, Chang
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5875 - 5887
  • [3] Continual knowledge infusion into pre-trained biomedical language models
    Jha, Kishlay
    Zhang, Aidong
    BIOINFORMATICS, 2022, 38 (02) : 494 - 502
  • [4] Pre-trained language models with domain knowledge for biomedical extractive summarization
    Xie Q.
    Bishop J.A.
    Tiwari P.
    Ananiadou S.
    Knowledge-Based Systems, 2022, 252
  • [5] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211
  • [6] SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models
    Wang, Liang
    Zhao, Wei
    Wei, Zhuoyu
    Liu, Jingming
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 4281 - 4294
  • [7] Knowledge Rumination for Pre-trained Language Models
    Yao, Yunzhi
    Wang, Peng
    Mao, Shengyu
    Tan, Chuanqi
    Huang, Fei
    Chen, Huajun
    Zhang, Ningyu
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3387 - 3404
  • [8] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [9] Focused Contrastive Loss for Classification With Pre-Trained Language Models
    He, Jiayuan
    Li, Yuan
    Zhai, Zenan
    Fang, Biaoyan
    Thorne, Camilo
    Druckenbrodt, Christian
    Akhondi, Saber
    Verspoor, Karin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3047 - 3061
  • [10] Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-trained Language Models
    Youssef, Paul
    Koras, Osman Alperen
    Li, Meijie
    Schlotterer, Jorg
    Seifert, Christin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 15588 - 15605