Exact reconstruction of damaged color images using a total variation model

被引:4
作者
Fonseca, I. [1 ]
Leoni, G. [1 ]
Maggi, F. [2 ]
Morini, M. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Florence, Dipartimento Matemat U Dini, Florence, Italy
[3] SISSA, I-34014 Trieste, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2010年 / 27卷 / 05期
基金
美国国家科学基金会;
关键词
Energy minimization; Calibrations; RGB total variation models; Colorization; Inpainting; Image restoration; COLORIZATION;
D O I
10.1016/j.anihpc.2010.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the reconstruction of damaged piecewice constant color images is studied using an RGB total variation based model for colorization/inpainting. In particular. it is shown that when color is known in a uniformly distributed region, then reconstruction is possible with maximal fidelity. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1291 / 1331
页数:41
相关论文
共 25 条
[1]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[2]  
[Anonymous], 2007, SPRINGER MONOGRAPHS
[3]  
[Anonymous], 1976, The Elements of Real Analysis
[4]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[5]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[6]   A tour of the theory of absolutely minimizing functions [J].
Aronsson, G ;
Crandall, MG ;
Juutinen, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 41 (04) :439-505
[7]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[8]  
BURIANEK J, 2004, P 3 INT S NONPH AN R, P121
[9]   Variational image inpainting [J].
Chan, TF ;
Shen, JH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (05) :579-619
[10]   Mathematical models for local nontexture inpaintings [J].
Chan, TF ;
Shen, JH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :1019-1043