Simpson's type inequalities for η-convex functions via k-Riemann-Liouville fractional integrals

被引:1
作者
Kermausuor, Seth [1 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
来源
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA | 2019年 / 23卷 / 02期
关键词
Simpson's inequality; eta-convex functions; Holder's inequality; k-Riemann-Louville fractional integrals;
D O I
10.12697/ACUTM.2019.23.17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce some Simpson's type integral inequalities via k-Riemann-Liouville fractional integrals for functions whose derivatives are eta-convex. These results generalize some results in the literature.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 17 条
[1]  
Alomari M, 2011, APPL MATH E-NOTES, V11, P110
[2]  
[Anonymous], 2010, Transylv. J. Math. Mech.
[3]  
Awan M. U., 2017, NONLINEAR SCI LETT A, V8, P333
[4]   On Strongly Generalized Convex Functions [J].
Awan, Muhammad Uzair ;
Noor, Muhammad Aslam ;
Noor, Khalida Inayat ;
Safdar, Farhat .
FILOMAT, 2017, 31 (18) :5783-5790
[5]  
Dragomir S. S., 1999, Tamkang J. Math., V30, P53, DOI [10.5556/j.tkjm.30.1999.4207, DOI 10.5556/J.TKJM.30.1999.4207]
[6]   On Simpson's inequality and applications [J].
Dragomir, SS ;
Agarwal, RP ;
Cerone, P .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (06) :533-579
[7]   ON φ-CONVEX FUNCTIONS [J].
Gordji, M. Eshaghi ;
Delavar, M. Rostamian ;
De La Sen, M. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (01) :173-183
[8]  
Kermausuor S., 2019, OPEN J MATH SCI, V3, P74, DOI DOI 10.30538/oms2019.0050
[9]   Ostrowski type inequalities for functions whose derivatives are strongly (α, m)-convex via k-Riemann-Liouville fractional integrals [J].
Kermausuor, Seth .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (01) :25-34
[10]   An inequality of Simpson type [J].
Liu, Z .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2059) :2155-2158