Review of mid-infrared plasmonic materials

被引:180
作者
Zhong, Yujun [1 ]
Malagari, Shyamala Devi [1 ]
Hamilton, Travis [1 ]
Wasserman, Daniel [1 ]
机构
[1] Univ Illinois, Micro & Nanotechnol Lab, Dept Elect Engn, Urbana, IL 61822 USA
基金
美国国家科学基金会;
关键词
mid-infrared; plasmonics; optical materials; optics; photonics; GRAPHENE PLASMONICS; OPTICAL-PROPERTIES; ELECTROMAGNETIC ENERGY; WAVE-GUIDES; SURFACE; ABSORPTION; GOLD; SILVER; LIGHT; EMISSION;
D O I
10.1117/1.JNP.9.093791
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The field of plasmonics has the potential to enable unique applications in the mid-infrared (IR) wavelength range. However, as is the case regardless of wavelength, the choice of plasmonic material has significant implications for the ultimate utility of any plasmonic device or structure. In this manuscript, we review the wide range of available plasmonic and phononic materials for mid-IR wavelengths, looking in particular at transition metal nitrides, transparent conducting oxides, silicides, doped semiconductors, and even newer plasmonic materials such as graphene. We also include in our survey materials with strong mid-IR phonon resonances, such as GaN, GaP, SiC, and the perovskite SrTiO3, all of which can support plasmon-like modes over limited wavelength ranges. We will discuss the suitability of each of these plasmonic and phononic materials, as well as the more traditional noble metals for a range of structures and applications and will discuss the potential and limitations of alternative plasmonic materials at these IR wavelengths. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:21
相关论文
共 140 条
  • [1] Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials
    Adams, D. C.
    Inampudi, S.
    Ribaudo, T.
    Slocum, D.
    Vangala, S.
    Kuhta, N. A.
    Goodhue, W. D.
    Podolskiy, V. A.
    Wasserman, D.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (13)
  • [2] Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
    Adato, Ronen
    Yanik, Ahmet A.
    Amsden, Jason J.
    Kaplan, David L.
    Omenetto, Fiorenzo G.
    Hong, Mi K.
    Erramilli, Shyamsunder
    Altug, Hatice
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) : 19227 - 19232
  • [3] OBSERVATION OF 2-DIMENSIONAL PLASMON IN SILICON INVERSION LAYERS
    ALLEN, SJ
    TSUI, DC
    LOGAN, RA
    [J]. PHYSICAL REVIEW LETTERS, 1977, 38 (17) : 980 - 983
  • [4] Epsilon-near-zero metamaterials and electromagnetic sources:: Tailoring the radiation phase pattern
    Alu, Andrea
    Silveirinha, Mario G.
    Salandrino, Alessandro
    Engheta, Nader
    [J]. PHYSICAL REVIEW B, 2007, 75 (15)
  • [5] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [6] Optical performance and metallic absorption in nanoplasmonic systems
    Arnold, Matthew D.
    Blaber, Martin G.
    [J]. OPTICS EXPRESS, 2009, 17 (05): : 3835 - 3847
  • [7] Semiconductor Surface Plasmon Sources
    Babuty, A.
    Bousseksou, A.
    Tetienne, J. -P.
    Doyen, I. Moldovan
    Sirtori, C.
    Beaudoin, G.
    Sagnes, I.
    De Wilde, Y.
    Colombelli, R.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (22)
  • [8] Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka
    Bardhan, Rizia
    Mukherjee, Shaunak
    Mirin, Nikolay A.
    Levit, Stephen D.
    Nordlander, Peter
    Halas, Naomi J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (16) : 7378 - 7383
  • [9] DIELECTRIC DISPERSION AND PHONON LINE SHAPE IN GALLIUM PHOSPHIDE
    BARKER, AS
    [J]. PHYSICAL REVIEW, 1968, 165 (03): : 917 - &
  • [10] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830