Review of mid-infrared plasmonic materials

被引:185
作者
Zhong, Yujun [1 ]
Malagari, Shyamala Devi [1 ]
Hamilton, Travis [1 ]
Wasserman, Daniel [1 ]
机构
[1] Univ Illinois, Micro & Nanotechnol Lab, Dept Elect Engn, Urbana, IL 61822 USA
基金
美国国家科学基金会;
关键词
mid-infrared; plasmonics; optical materials; optics; photonics; GRAPHENE PLASMONICS; OPTICAL-PROPERTIES; ELECTROMAGNETIC ENERGY; WAVE-GUIDES; SURFACE; ABSORPTION; GOLD; SILVER; LIGHT; EMISSION;
D O I
10.1117/1.JNP.9.093791
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The field of plasmonics has the potential to enable unique applications in the mid-infrared (IR) wavelength range. However, as is the case regardless of wavelength, the choice of plasmonic material has significant implications for the ultimate utility of any plasmonic device or structure. In this manuscript, we review the wide range of available plasmonic and phononic materials for mid-IR wavelengths, looking in particular at transition metal nitrides, transparent conducting oxides, silicides, doped semiconductors, and even newer plasmonic materials such as graphene. We also include in our survey materials with strong mid-IR phonon resonances, such as GaN, GaP, SiC, and the perovskite SrTiO3, all of which can support plasmon-like modes over limited wavelength ranges. We will discuss the suitability of each of these plasmonic and phononic materials, as well as the more traditional noble metals for a range of structures and applications and will discuss the potential and limitations of alternative plasmonic materials at these IR wavelengths. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:21
相关论文
共 140 条
[1]   Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials [J].
Adams, D. C. ;
Inampudi, S. ;
Ribaudo, T. ;
Slocum, D. ;
Vangala, S. ;
Kuhta, N. A. ;
Goodhue, W. D. ;
Podolskiy, V. A. ;
Wasserman, D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[2]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[3]   OBSERVATION OF 2-DIMENSIONAL PLASMON IN SILICON INVERSION LAYERS [J].
ALLEN, SJ ;
TSUI, DC ;
LOGAN, RA .
PHYSICAL REVIEW LETTERS, 1977, 38 (17) :980-983
[4]   Epsilon-near-zero metamaterials and electromagnetic sources:: Tailoring the radiation phase pattern [J].
Alu, Andrea ;
Silveirinha, Mario G. ;
Salandrino, Alessandro ;
Engheta, Nader .
PHYSICAL REVIEW B, 2007, 75 (15)
[5]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[6]   Optical performance and metallic absorption in nanoplasmonic systems [J].
Arnold, Matthew D. ;
Blaber, Martin G. .
OPTICS EXPRESS, 2009, 17 (05) :3835-3847
[7]   Semiconductor Surface Plasmon Sources [J].
Babuty, A. ;
Bousseksou, A. ;
Tetienne, J. -P. ;
Doyen, I. Moldovan ;
Sirtori, C. ;
Beaudoin, G. ;
Sagnes, I. ;
De Wilde, Y. ;
Colombelli, R. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[8]   Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka [J].
Bardhan, Rizia ;
Mukherjee, Shaunak ;
Mirin, Nikolay A. ;
Levit, Stephen D. ;
Nordlander, Peter ;
Halas, Naomi J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (16) :7378-7383
[9]   DIELECTRIC DISPERSION AND PHONON LINE SHAPE IN GALLIUM PHOSPHIDE [J].
BARKER, AS .
PHYSICAL REVIEW, 1968, 165 (03) :917-&
[10]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830