Chromatic number and spectral radius

被引:22
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
graph laplacian; largest eigenvalue; least eigenvalue; k-partite graph; chromatic number;
D O I
10.1016/j.laa.2007.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Write mu(A) = mu(1)(A) >=...>= mu(min) (A) for the eigenvalUes of a Hermitian matrix A. Our main result is: Let A be a Hermitian matrix partitioned into r x r blocks so that all diagonal blocks are zero. Then for every real diagonal matrix B of the same size as A m(B - A) >= mu ( B + 1/r-1 A). Let G be a nonempty graph, X(G) be its chromatic number, A be its adjacency rnatrix, and L be its Laplacian. The above inequality implies the well-known result of Hoffman x(G) >= 1 + mu(A)/-mu(min)(A) and also, X(G) > 1 + mu(A)/mu(L) - mu(A) Equality holds in the latter inequality if and only if every two color classes of G induce a vertical bar mu(min)(A)vertical bar-regular subgraph. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:810 / 814
页数:5
相关论文
共 6 条
[1]  
Godsil C., 2001, GRADUATE TEXTS MATH, V207
[2]  
Hoffman A. J., 1970, GRAPH THEORY ITS APP, P79, DOI DOI 10.1142/97898127969360041
[3]   Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees [J].
Hong, Y ;
Zhang, XD .
DISCRETE MATHEMATICS, 2005, 296 (2-3) :187-197
[4]  
MERRIS R, 1994, LINEAR ALGEBRA APPL, V198, P143
[5]   A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph [J].
Shu, JL ;
Hong, Y ;
Wen-Ren, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) :123-129
[6]   On the spectral radius of graphs [J].
Yu, AM ;
Lu, M ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :41-49