Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review

被引:20
|
作者
Bera, Somenath [1 ]
Shrivastava, Vimal K. [2 ]
Satapathy, Suresh Chandra [3 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara 144411, India
[2] Kalinga Inst Ind Technol KIIT, Sch Elect Engn, Bhubaneswar 751024, India
[3] Kalinga Inst Ind Technol KIIT, Sch Comp Engn, Bhubaneswar 751024, India
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2022年 / 133卷 / 02期
关键词
Convolutional neural network; deep learning; feature fusion; hyperspectral image classification; review; spectral-spatial feature; SPECTRAL-SPATIAL CLASSIFICATION; NEAREST REGULARIZED SUBSPACE; FEATURE FUSION; CNN; INFORMATION; TRENDS;
D O I
10.32604/cmes.2022.020601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperspectral image (HSI) classification has been one of the most important tasks in the remote sensing community over the last few decades. Due to the presence of highly correlated bands and limited training samples in HSI, discriminative feature extraction was challenging for traditional machine learning methods. Recently, deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification. Among various deep learning models, convolutional neural networks (CNNs) have shown huge success and offered great potential to yield high performance in HSI classification. Motivated by this successful performance, this paper presents a systematic review of different CNN architectures for HSI classification and provides some future guidelines. To accomplish this, our study has taken a few important steps. First, we have focused on different CNN architectures, which are able to extract spectral, spatial, and joint spectral-spatial features. Then, many publications related to CNN based HSI classifications have been reviewed systematically. Further, a detailed comparative performance analysis has been presented between four CNN models namely 1D CNN, 2D CNN, 3D CNN, and feature fusion based CNN (FFCNN). Four benchmark HSI datasets have been used in our experiment for evaluating the performance. Finally, we concluded the paper with challenges on CNN based HSI classification and future guidelines that may help the researchers to work on HSI classification using CNN.
引用
收藏
页码:219 / 250
页数:32
相关论文
共 50 条
  • [21] DEEP CONVOLUTIONAL NETWORKS WITH SUPERPIXEL SEGMENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cao, Jiayan
    Chen, Zhao
    Wang, Bin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3310 - 3313
  • [22] Remote Sensing Image Scene Classification Based on Convolutional Neural Networks
    Liu, Yumei
    Informatica (Slovenia), 2025, 49 (09): : 45 - 54
  • [23] Modified Convolutional Neural Networks Architecture for Hyperspectral Image Classification (Extra-Convolutional Neural Networks)
    Hamouda, Maissa
    Bouhlel, Med Salim
    IET IMAGE PROCESSING, 2021,
  • [24] Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning
    Xie, Fuding
    Gao, Quanshan
    Jin, Cui
    Zhao, Fengxia
    REMOTE SENSING, 2021, 13 (05) : 1 - 17
  • [25] Hyperspectral image classification method based on narrowing semantic gap convolutional neural network
    Xu, Shufang
    Geng, Sijie
    Fan, Tingting
    Li, Chenming
    Gao, Hongmin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (07) : 2208 - 2234
  • [26] SFFNet: Staged Feature Fusion Network of Connecting Convolutional Neural Networks and Graph Convolutional Neural Networks for Hyperspectral Image Classification
    Li, Hao
    Xiong, Xiaorui
    Liu, Chaoxian
    Ma, Yong
    Zeng, Shan
    Li, Yaqin
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [27] Deep Recurrent Neural Networks for Hyperspectral Image Classification
    Mou, Lichao
    Ghamisi, Pedram
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 3639 - 3655
  • [28] Hyperspectral Image Classification Based on Dilated Convolutional Attention Neural Network
    Zhang Xiangdong
    Wang Tengjun
    Zhu Shaojun
    Yang Yun
    ACTA OPTICA SINICA, 2021, 41 (03)
  • [29] Convolutional Neural Networks for image classification
    Jmour, Nadia
    Zayen, Sehla
    Abdelkrim, Afef
    2018 INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND ELECTRICAL TECHNOLOGIES (IC_ASET), 2017, : 397 - 402
  • [30] GRAPH-BASED DEEP CONVOLUTIONAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cao, Jiayan
    Chen, Zhao
    Wang, Bin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3270 - 3273