Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review

被引:20
|
作者
Bera, Somenath [1 ]
Shrivastava, Vimal K. [2 ]
Satapathy, Suresh Chandra [3 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara 144411, India
[2] Kalinga Inst Ind Technol KIIT, Sch Elect Engn, Bhubaneswar 751024, India
[3] Kalinga Inst Ind Technol KIIT, Sch Comp Engn, Bhubaneswar 751024, India
来源
关键词
Convolutional neural network; deep learning; feature fusion; hyperspectral image classification; review; spectral-spatial feature; SPECTRAL-SPATIAL CLASSIFICATION; NEAREST REGULARIZED SUBSPACE; FEATURE FUSION; CNN; INFORMATION; TRENDS;
D O I
10.32604/cmes.2022.020601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperspectral image (HSI) classification has been one of the most important tasks in the remote sensing community over the last few decades. Due to the presence of highly correlated bands and limited training samples in HSI, discriminative feature extraction was challenging for traditional machine learning methods. Recently, deep learning based methods have been recognized as powerful feature extraction tool and have drawn a significant amount of attention in HSI classification. Among various deep learning models, convolutional neural networks (CNNs) have shown huge success and offered great potential to yield high performance in HSI classification. Motivated by this successful performance, this paper presents a systematic review of different CNN architectures for HSI classification and provides some future guidelines. To accomplish this, our study has taken a few important steps. First, we have focused on different CNN architectures, which are able to extract spectral, spatial, and joint spectral-spatial features. Then, many publications related to CNN based HSI classifications have been reviewed systematically. Further, a detailed comparative performance analysis has been presented between four CNN models namely 1D CNN, 2D CNN, 3D CNN, and feature fusion based CNN (FFCNN). Four benchmark HSI datasets have been used in our experiment for evaluating the performance. Finally, we concluded the paper with challenges on CNN based HSI classification and future guidelines that may help the researchers to work on HSI classification using CNN.
引用
收藏
页码:219 / 250
页数:32
相关论文
共 50 条
  • [1] Advances in Hyperspectral Image Classification Based on Convolutional Neural Networks: A Review
    Bera, Somenath
    Shrivastava, Vimal K.
    Satapathy, Suresh Chandra
    CMES - Computer Modeling in Engineering and Sciences, 2022, 133 (02): : 219 - 250
  • [2] CLASSIFICATION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Zhang, Yameng
    Li, Liutong
    Zhu, Mingcang
    He, Yong
    Li, Minqi
    Guo, Zhengqiang
    He, Yue
    Yu, Zhenlu
    Yang, Xiaocheng
    Liu, Xin
    Luo, Jianhua
    Yang, Taoli
    Liu, Yalan
    Li, Jiang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1828 - 1831
  • [3] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    NEUROCOMPUTING, 2017, 219 : 88 - 98
  • [4] Hyperspectral Image Classification with Convolutional Neural Networks
    Slavkovikj, Viktor
    Verstockt, Steven
    De Neve, Wesley
    Van Hoecke, Sofie
    Van de Walle, Rik
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1159 - 1162
  • [5] Advances of Hyperspectral Image Classification Based on Graph Neural Networks
    Wan S.
    Yang J.
    Gong C.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (06): : 1687 - 1709
  • [6] Improved Convolutional Neural Networks for Hyperspectral Image Classification
    Kalita, Shashanka
    Biswas, Mantosh
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 397 - 410
  • [7] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [8] Deformable Convolutional Neural Networks for Hyperspectral Image Classification
    Zhu, Jian
    Fang, Leyuan
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1254 - 1258
  • [9] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    JOURNAL OF SENSORS, 2015, 2015
  • [10] Morphological Convolutional Neural Networks for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Mondal, Ranjan
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8689 - 8702