KIDs are non-generic

被引:47
作者
Beig, R
Chrusciel, PT
Schoen, R
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Fac Sci, Dept Math, F-37200 Tours, France
[3] Stanford Univ, Dept Math, Palo Alto, CA 94304 USA
来源
ANNALES HENRI POINCARE | 2005年 / 6卷 / 01期
关键词
D O I
10.1007/s00023-005-0202-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the space-time developments of generic solutions of the vacuum constraint Einstein equations do not possess any global or local Killing vectors, when Cauchy data are prescribed on an asymptotically flat Cauchy surface, or on a compact Cauchy surface with mean curvature close to a constant, or for CMC asymptotically hyperbolic initial data sets. More generally, we show that nonexistence of global symmetries implies, generically, non-existence of local ones. As part of the argument, we prove that generic metrics do not possess any local or global conformal Killing vectors.
引用
收藏
页码:155 / 194
页数:40
相关论文
共 23 条
[1]   PROPAGATION OF THE ANALYZING CAPABILITY OF SOLUTIONS IN NONLINEAR HYPERBOLIC SYSTEMS [J].
ALINHAC, S ;
METIVIER, G .
INVENTIONES MATHEMATICAE, 1984, 75 (02) :189-204
[2]  
[Anonymous], DISS MATH
[3]  
[Anonymous], 1991, UNIQUENESS LARGE SOL
[4]   REGULARITY OF VARIATIONAL MAXIMAL SURFACES [J].
BARTNIK, R .
ACTA MATHEMATICA, 1988, 161 (3-4) :145-181
[5]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[6]   Global structure of Robinson-Trautman radiative space-times with cosmological constant [J].
Bicak, J ;
Podolsky, J .
PHYSICAL REVIEW D, 1997, 55 (04) :1985-1993
[7]  
BOURGUIGNON JP, 1976, C R ACAD SCI PAR A B, V282, pA867
[8]  
BRANSON T, 2004, MATHDG0402100V2
[9]   THE BOOST PROBLEM IN GENERAL-RELATIVITY [J].
CHRISTODOULOU, D ;
OMURCHADHA, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (02) :271-300
[10]  
CHRUSCIEL PT, 2004, GRQC0403066