One-and two-dimensional gap solitons and dynamics in the PT - symmetric lattice potential and spatially-periodic momentum modulation

被引:13
作者
Chen, Yong [1 ,2 ]
Yan, Zhenya [1 ,2 ]
Li, Xin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Key Lab Math Mech, AMSS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 049, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 55卷
关键词
Generalized nonlinear Schrodinger equation; PT-symmetric lattice potential; Spatially-periodic momentum modulation; Gap solitons; Stability;
D O I
10.1016/j.cnsns.2017.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The influence of spatially-periodic momentum modulation on beam dynamics in paritytime (PT) symmetric optical lattice is systematically investigated in the one-and twodimensional nonlinear Schrdinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions. (C) 2017 Elsevier B. V. All rights reserved.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 48 条
  • [11] Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential
    Cartarius, Holger
    Wunner, Guenter
    [J]. PHYSICAL REVIEW A, 2012, 86 (01):
  • [12] PT Metamaterials via Complex-Coordinate Transformation Optics
    Castaldi, Giuseppe
    Savoia, Silvio
    Galdi, Vincenzo
    Alu, Andrea
    Engheta, Nader
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [13] Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality
    Chen, Yi-Hsiang
    Chang, Gi-Kung
    Kuo, Shu-Ming
    Huang, Sheng-Yu
    Hu, I-Chen
    Lo, Yu-Lun
    Shih, Shin-Ru
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [14] Localized modes of the (n+1)-dimensional Schrodinger equation with power-law nonlinearities in PT-symmetric potentials
    Dai, Chao-Qing
    Zhang, Xiao-Fei
    Fan, Yan
    Chen, Liang
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 : 239 - 250
  • [15] Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials
    Dai, Chao-Qing
    Wang, Xiao-Gang
    Zhou, Guo-Quan
    [J]. PHYSICAL REVIEW A, 2014, 89 (01):
  • [16] Cusp bifurcation in the eigenvalue spectrum of PT-symmetric Bose-Einstein condensates
    Dizdarevic, Daniel
    Dast, Dennis
    Haag, Daniel
    Main, Joerg
    Cartarius, Holger
    Wunner, Guenter
    [J]. PHYSICAL REVIEW A, 2015, 91 (03):
  • [17] Dipolar Bose-Einstein condensates in a PT-symmetric double-well potential
    Fortanier, Ruediger
    Dast, Dennis
    Haag, Daniel
    Cartarius, Holger
    Main, Joerg
    Wunner, Guenter
    Gutoehrlein, Robin
    [J]. PHYSICAL REVIEW A, 2014, 89 (06):
  • [18] Observation of PT-Symmetry Breaking in Complex Optical Potentials
    Guo, A.
    Salamo, G. J.
    Duchesne, D.
    Morandotti, R.
    Volatier-Ravat, M.
    Aimez, V.
    Siviloglou, G. A.
    Christodoulides, D. N.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (09)
  • [19] Solitons supported by complex PT-symmetric Gaussian potentials
    Hu, Sumei
    Ma, Xuekai
    Lu, Daquan
    Yang, Zhenjun
    Zheng, Yizhou
    Hu, Wei
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):
  • [20] Influence of the imaginary component of the photonic potential on the properties of solitons in PT-symmetric systems
    Jisha, Chandroth P.
    Devassy, Lini
    Alberucci, Alessandro
    Kuriakose, V. C.
    [J]. PHYSICAL REVIEW A, 2014, 90 (04):