Error bounds for rank constrained optimization problems and applications

被引:10
|
作者
Bi, Shujun [1 ]
Pan, Shaohua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rank constrained optimization; Error bounds; Calmness; Exact penalty; LEAST-SQUARES; INEQUALITIES; MINIMIZATION; EQUATIONS;
D O I
10.1016/j.orl.2016.03.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For the rank constrained optimization problem whose feasible set is the intersection of the rank constraint set R = {X is an element of X vertical bar rank(X) <= kappa} and a closed convex set Omega, we establish the local (global) Lipschitzian type error bounds for estimating the distance from any X is an element of Omega (X is an element of X) to the feasible set and the solution set, under the calmness of a multifunction associated to the feasible set at the origin, which is satisfied by three classes of common rank constrained optimization problems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 50 条
  • [31] Error Bounds of Constrained Quadratic Functions and Piecewise Affine Inequality Systems
    K.F. Ng
    X.Y. Zheng
    Journal of Optimization Theory and Applications, 2003, 118 : 601 - 618
  • [32] Error bounds for complementarity problems with tridiagonal nonlinear functions
    G. Alefeld
    Z. Wang
    Computing, 2008, 83 : 175 - 192
  • [33] Sufficient conditions for error bounds of difference functions and applications
    Nguyen Thi Van Hang
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (03) : 439 - 456
  • [34] Sufficient conditions for error bounds of difference functions and applications
    Nguyen Thi Van Hang
    Jen-Chih Yao
    Journal of Global Optimization, 2016, 66 : 439 - 456
  • [35] New fractional error bounds for polynomial systems with applications to Holderian stability in optimization and spectral theory of tensors
    Li, G.
    Mordukhovich, B. S.
    Pham, T. S.
    MATHEMATICAL PROGRAMMING, 2015, 153 (02) : 333 - 362
  • [36] B-matrices and error bounds for linear complementarity problems
    Garcia-Esnaola, M.
    Pena, J. M.
    CALCOLO, 2017, 54 (03) : 813 - 822
  • [37] Error bounds for linear complementarity problems for SB-matrices
    Dai, Ping-Fan
    Li, Yao-Tang
    Lu, Chang-Jing
    NUMERICAL ALGORITHMS, 2012, 61 (01) : 121 - 139
  • [38] Note on error bounds for linear complementarity problems of Nekrasov matrices
    Li, Chaoqian
    Yang, Shaorong
    Huang, Hui
    Li, Yaotang
    Wei, Yimin
    NUMERICAL ALGORITHMS, 2020, 83 (01) : 355 - 372
  • [39] A Priori Error Bounds for Parabolic Interface Problems with Measure Data
    Gupta, J. Sen
    NUMERICAL ANALYSIS AND APPLICATIONS, 2023, 16 (03) : 259 - 275
  • [40] Error bounds for linear complementarity problems for B-matrices
    Garcia-Esnaola, M.
    Pena, J. M.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (07) : 1071 - 1075