Error bounds for rank constrained optimization problems and applications

被引:10
|
作者
Bi, Shujun [1 ]
Pan, Shaohua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rank constrained optimization; Error bounds; Calmness; Exact penalty; LEAST-SQUARES; INEQUALITIES; MINIMIZATION; EQUATIONS;
D O I
10.1016/j.orl.2016.03.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For the rank constrained optimization problem whose feasible set is the intersection of the rank constraint set R = {X is an element of X vertical bar rank(X) <= kappa} and a closed convex set Omega, we establish the local (global) Lipschitzian type error bounds for estimating the distance from any X is an element of Omega (X is an element of X) to the feasible set and the solution set, under the calmness of a multifunction associated to the feasible set at the origin, which is satisfied by three classes of common rank constrained optimization problems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 50 条
  • [21] TIGHT ERROR BOUNDS FOR THE SIGN-CONSTRAINED STIEFEL MANIFOLD
    Chen, Xiaojun
    He, Yifan
    Zhang, Zaikun
    SIAM JOURNAL ON OPTIMIZATION, 2025, 35 (01) : 302 - 329
  • [22] Error bounds and stability of the projection method for strongly pseudomonotone equilibrium problems
    Hai, T. N.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (12) : 2516 - 2530
  • [23] An exact penalty method for semidefinite-box-constrained low-rank matrix optimization problems
    Liu, Tianxiang
    Lu, Zhaosong
    Chen, Xiaojun
    Dai, Yu-Hong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 563 - 586
  • [24] Error Bounds, Calmness and their Applications in Nonsmooth Analysis
    Penot, Jean-Paul
    NONLINEAR ANALYSIS AND OPTIMIZATION II: OPTIMIZATION, 2010, 514 : 225 - 247
  • [25] Error bounds for linear complementarity problems of Nekrasov matrices
    Marta García-Esnaola
    Juan Manuel Peña
    Numerical Algorithms, 2014, 67 : 655 - 667
  • [26] Error bounds for inverse electromagnetic problems in soil mechanics
    Albanese, R
    Calabrò, G
    Lombardo, G
    Reitano, G
    Fresa, R
    Morabito, P
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (5-6) : 603 - 613
  • [27] Error bounds for complementarity problems with tridiagonal nonlinear functions
    Alefeld, G.
    Wang, Z.
    COMPUTING, 2008, 83 (04) : 275 - 292
  • [28] Error bounds for linear complementarity problems of Nekrasov matrices
    Garcia-Esnaola, Marta
    Manuel Pena, Juan
    NUMERICAL ALGORITHMS, 2014, 67 (03) : 655 - 667
  • [29] Error Bounds of Singular Boundary Method for Potential Problems
    Li, Junpu
    Chen, Wen
    Gu, Yan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1987 - 2004
  • [30] Error bounds of constrained quadratic functions and piecewise affine inequality systems
    Ng, KF
    Zheng, XY
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) : 601 - 618