Unveiling magnetic interactions of ruthenium trichloride via constraining direction of orbital moments: Potential routes to realize a quantum spin liquid

被引:55
作者
Hou, Y. S.
Xiang, H. J. [1 ]
Gong, X. G.
机构
[1] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Key Lab Computat Phys Sci,Minist Educ, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; ALPHA-RUCL3; EXCHANGE; STATES;
D O I
10.1103/PhysRevB.96.054410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent experiments reveal that the honeycomb ruthenium trichloride alpha-RuCl3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e.g., alpha-RuCl3) with nonnegligible orbital moments by constraining the directions of orbital moments. With this scheme, we put forward a minimal J(1)-K-1-Gamma(1)-J(3)-K-3 model for alpha-RuCl3 and find that: (I) The third nearest neighbor (NN) antiferromagnetic Heisenberg interaction J(3) stabilizes the zigzag antiferromagnetic order; (II) The NN symmetric off-diagonal exchange Gamma(1) plays a pivotal role in determining the preferred direction of magnetic moments and generating the spin wave gap. An exact diagonalization study on this model shows that the Kitaev QSL can be realized by suppressing the NN symmetric off-diagonal exchange Gamma(1) and the third NN Heisenberg interaction J(3). Thus, we not only propose a powerful general scheme for investigating the intriguing magnetism of J(eff) = 1/2 magnets, but also point out future directions for realizing the Kitaev QSL in the honeycomb ruthenium trichloride a-RuCl3.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Agrestini S., ARXIV170405100
  • [2] Kitaev's exact solution approximated
    Armitage, N. Peter
    [J]. NATURE MATERIALS, 2016, 15 (07) : 701 - 702
  • [3] Spin liquids in frustrated magnets
    Balents, Leon
    [J]. NATURE, 2010, 464 (7286) : 199 - 208
  • [4] Banerjee A, 2016, NAT MATER, V15, P733, DOI [10.1038/nmat4604, 10.1038/NMAT4604]
  • [5] Implementation of the projector augmented-wave LDA+U method:: Application to the electronic structure of NiO
    Bengone, O
    Alouani, M
    Blöchl, P
    Hugel, J
    [J]. PHYSICAL REVIEW B, 2000, 62 (24) : 16392 - 16401
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] Evolution of magnetism in the single-crystal honeycomb iridates (Na1-xLix)2IrO3
    Cao, G.
    Qi, T. F.
    Li, L.
    Terzic, J.
    Cao, V. S.
    Yuan, S. J.
    Tovar, M.
    Murthy, G.
    Kaul, R. K.
    [J]. PHYSICAL REVIEW B, 2013, 88 (22):
  • [8] Low-temperature crystal and magnetic structure of α-RuCl3
    Cao, H. B.
    Banerjee, A.
    Yan, J. -Q.
    Bridges, C. A.
    Lumsden, M. D.
    Mandrus, D. G.
    Tennant, D. A.
    Chakoumakos, B. C.
    Nagler, S. E.
    [J]. PHYSICAL REVIEW B, 2016, 93 (13)
  • [9] Zigzag Magnetic Order in the Iridium Oxide Na2IrO3
    Chaloupka, Jiri
    Jackeli, George
    Khaliullin, Giniyat
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (09)
  • [10] Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A2IrO3
    Chaloupka, Jiri
    Jackeli, George
    Khaliullin, Giniyat
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (02)